• 제목/요약/키워드: DNA probes

검색결과 245건 처리시간 0.026초

Localization of 5S and 25S rRNA Genes on Somatic and Meiotic Chromosomes in Capsicum Species of Chili Pepper

  • Kwon, Jin-Kyung;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • 제27권2호
    • /
    • pp.205-209
    • /
    • 2009
  • The loci of the 5S and 45S rRNA genes were localized on chromosomes in five species of Capsicum, namely, annuum, chacoense, frutescens, baccatum, and chinense by FISH. The 5S rDNA was localized to the distal region of one chromosome in all species observed. The number of 45S rDNA loci varied among species; one in annuum, two in chacoense and frutescens, and chinense, and four in baccatum, with the exceptions that 'CM334' of annuum had three loci and 'tabasco' of frutescens gad one locus. 'CM334'-derived BAC clones, 384B09 and 365P05, were screened with 5S rDNA as a probe, and BACs 278M03 and 262A23 were screened with 25S rDNA as a probe. Both ends of these BAC clones were sequenced. FISH with these BAC probes on pachytenes from 'CM334' plant showed one 5S rDNA locus and three 45S rDNA loci, consistent with the patterns on the somatic chromosomes. The 5S rDNA probe was also applied on extended DNA fibers to reveal that its coverage measured as long as 0.439 Mb in the pepper genome. FISH techniques applied on somatic and meiotic chromosomes and fibers have been established for chili to provide valuable information about the copy number variation of 45S rDNA and the actual physical size of the 5S rDNA in chili.

FISH와 PCR에 의한 돼지 체세포 및 배아세포의 성 판정 (Sex Determination in Somatic and Embryonic Cells of the Pig by FISH and PCR)

  • 정용;전진태;김기동;이상호;홍기창
    • 한국가축번식학회지
    • /
    • 제20권3호
    • /
    • pp.323-331
    • /
    • 1996
  • 포유동물에 있어서 조기 성 판정기술은 축산에 있어서의 성별 육종프로그램이나 인간의 X-염색체 관련 열성유전병의 산전진단 등 여러 분야에 응용될 수 있다. 초기배에 대한 성 판정은 성염색체에 존재하는 특이한 염기서열을 증폭시키는 polymerase chain reaction (PCR)과 X와 Y 염색체에 대한 특이적 probe를 이용하는 fluorescent in situ hybridization (FISH)에 의하여 수행될 수 있다. 1992년과 93년, 2개년도에 걸쳐 본 연구실에서 돼지의 3.3 kb 웅성특이 DNA 절편(pEM39)을 cloning하였다. 본 연구는 pEM39가 성특이 DNA-probe로 이용될 수 있는지를 조사하기 위해 PCR과 FISH를 이용하였다. 돼지 난자는 도축장에서 구입한 돼지 난소로부터 채취되었고, 체외배양후 체외수정되었다. 한편 처녀발생나자를 negative control로 이용하였다. 2 세포기의 수정란을 선발한 후 PCR을 통하여 DNA를 분석한 결과, 10개의 수정란 중 6개는 자성, 다른 4개는 웅성으로 판정되었으며, FISH를 수행한 결과, done된 웅성특이 DNA 단편은 돼지 간조직과 초기배에서 웅성특이성을 보였다. 또한 FISH와 karyotyping을 수행한 결과 clone된 웅성특이 DNA 단편이 Y 염색체 q-arm의 heterochromatic region에 위치함을 알 수 있었다. 이러한 결과로 보아 clone된 웅성특이 DNA 단편이 초기배의 성을 조기판정하는데 있어 유용하리라 사료되며, PCR에 의한 초기배의 성 판정에 있어 신뢰할만할 지표가 될 수 있을 것이다.

  • PDF

진단의학 도구로서의 DNA칩 (DNAchip as a Tool for Clinical Diagnostics)

  • 김철민;박희경
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.97-100
    • /
    • 2004
  • The identification of the DNA structure as a double-stranded helix consting of two nucleotide chain molecules was a milestone in modern molecular biology. The DNA chip technology is based on reverse hybridization that follows the principle of complementary binding of double-stranded DNA. DNA chip can be described as the deposition of defined nucleic acid sequences, probes, on a solid substrate to form a regular array of elements that are available for hybridization to complementary nucleic acids, targets. DNA chips based on cDNA clons, oligonucleotides and genomic clons have been developed for gene expression studies, genetic variation analysis and genomic changes associated with disease including cancers and genetic diseases. DNA chips for gene expression profiling can be used for functional analysis in human eel Is and animal models, disease-related gene studies, assessment of gene therapy, assessment of genetically modified food, and research for drug discovery. DNA chips for genetic variation detection can be used for the detection of mutations or chromosomal abnormalities in cnacers, drug resistances in cancer cells or pathogenic microbes, histocompatibility analysis for transplantation, individual identification for forensic medicine, and detection and discrimination of pathogenic microbes. The DNA chip will be generalized as a useful tool in clinical diagnostics in near future. Lab-on-a chip and informatics will facilitate the development of a variety of DNA chips for diagnostic purpose.

  • PDF

Development of DNA Microarray for Pathogen Detection

  • Yoo, Seung Min;Keum, Ki Chang;Yoo, So Young;Choi, Jun Yong;Chang, Kyung Hee;Yoo, Nae Choon;Yoo, Won Min;Kim, June Myung;Lee, Duke;Lee, Sang Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권2호
    • /
    • pp.93-99
    • /
    • 2004
  • Pathogens pose a significant threat to humans, animals, and plants. Consequently, a considerable effort has been devoted to developing rapid, convenient, and accurate assays for the detection of these unfavorable organisms. Recently, DNA-microarray based technology is receiving much attention as a powerful tool for pathogen detection. After the target gene is first selected for the unique identification of microorganisms, species-specific probes are designed through bioinformatic analysis of the sequences, which uses the info rmation present in the databases. DNA samples, which were obtained from reference and/or clinical isolates, are properly processed and hybridized with species-specific probes that are immobilized on the surface of the microarray for fluorescent detection. In this study, we review the methods and strategies for the development of DNA microarray for pathogen detection, with the focus on probe design.

Genetic Study of Soybean Sudden Death Syndrome Pathogen(Fusarium solani f. sp. glycines) isolated from Geographically Different Fields based on RFLPs of Mitochondrial DNA

  • Cho, Joon-Hyeong;J. C. Rupe
    • 한국작물학회지
    • /
    • 제45권2호
    • /
    • pp.143-149
    • /
    • 2000
  • From the soils of soybean fields in Cotton Branch Station (CBS) and Pine Tree Station (PTS), Arkansas, USA, various single spore isloates of sudden death syndrome (SDS) pathogen were obtained on modified Nash & Snyder's medium (MNSM) with dilution plating technique and transferred to potato dextrose agar (PDA) medium to identify the cultural colony shape. The colony shapes of these isolates resembled F. solani isolate 171 which was white and chalky shaped on MNSM and most of them had unique form of morphology which produced white margin and blue center colony on PDA. Although, some of these isolates had more dark blue or showed slightly different color, all isolates that were selected randomly for green-house inoculation assay produced typical foliar symptoms on leaves of soybean, Hartz 6686. To determine the genetic differences among the isolates, mitochondrial DNA restriction fragment length polymorphism (RFLP) was conducted with fourty isolates from both fields, using mtDNA probes, 2U18 and 4U40, derived from Colletotrichum orbiculare. We obtained distinctive RFLPs in each treatment of restriction enzyme, EcoRI and HaeⅢ. Isolates, 11-2-5 and 14-3-1-1, from CBS and isolates, 104-3-1-2 and 701-1-5-1, from PTS showed different band patterns from 171 in both or in either treatment of restriction enzymes. Even if some of these isolates showed heterogeneous, they were more closer to 171 than PN603. And, also, rest of the thirty-six isolates had exactly same polymorphisms as 171 in each treatment of restriction enzyme. Although, some of the isolates showed the different morphological shape on PDA and slightly different band patterns on RFLPs, all of the isolates selected on MNSM due to their distinctive colony shape from other fungi produced the typical foliar symptoms on soybean leaves in greenhouse inoculation assay. It might be suggested that these isolates were not genetically different from check isolate 171 and they were unique strain of F. solani.

  • PDF

Construction of a System for the Strawberry Nursery Production towards Elimination of Latent Infection of Anthracnose Fungi by a Combination of PCR and Microtube Hybridization

  • Furuta, Kazuyoshi;Nagashima, Saki;Inukai, Tsuyoshi;Masuta, Chikara
    • The Plant Pathology Journal
    • /
    • 제33권1호
    • /
    • pp.80-86
    • /
    • 2017
  • One of the major problems in strawberry production is difficulty in diagnosis of anthracnose caused by Colletotrichum acutatum or Glomerella cingulata in latent infection stage. We here developed a diagnostic tool for the latent infection consisting of initial culturing of fungi, DNA extraction, synthesis of PCR-amplified probes and microtube hybridization (MTH) using a macroarray. The initial culturing step is convenient to lure the fungi out of the plant tissues, and to extract PCR-inhibitor-free DNA directly from fungal hyphae. For specific detection of the fungi, PCR primers were designed to amplify the fungal MAT1-2 gene. The subsequent MTH step using the PCR products as probes can replace the laborious electrophoresis step providing us sequence information and high-throughput screening. Using this method, we have conducted a survey for a few thousands nursery plants every year for three consecutive years, and finally succeeded in eliminating latent infection in the third year of challenge.

임상분리 Staphylococcus속 균주로부터 마크로라이드-린코사마이드-스트렙토그라민 B(MLS)계 항생물질에 대한 새로운 유도내성 유전자의 검색 (Screening of Novel Inducible Resistance Gene to Macrolide-Lincosamide-Streptogramin B (MLS) Antibiotics from Clinical Isolates of Staphylococcus spp)

  • 오정자;권애란;이미정;김숙경;최성숙;최응칠;김병각
    • Biomolecules & Therapeutics
    • /
    • 제1권2호
    • /
    • pp.177-182
    • /
    • 1993
  • From 84 clinical isolates of Staphylococcus species, ten strains showing inducible resistance to MLS antibiotics were selected by disk agar diffusion method. Colony hybridization was executed using two MLS inducible resistance genes, ermA and ermC, previously identified from S. aureus as probes. S. hemolyticus 401 and S. epidermidis 542 whose genes were not homologous to those probes were finally selected. It was determined that the resistance genes of S. hemolyticus 401 and S. epidermidis 542 were not homologous to ermA, ermC and ermAM by Southern hybridization. S. epidermidis 542 had a plasmid DNA. To know if the plasmid may have genes related to inducible resistance, it was attempted to transform B. subtilis BR151 and S. aureus RN4220 with the plasmid prepared from S. epidermidis 542. It was shown that the gene related to inducible resistance to MLS antibiotics did not exist in this plasmid. These results indicate that two clinical isolates of S. hemolyticus 401 and S. epidermidis 542 had novel genes which were not homologous to MLS resistance genes identified previously. It was assumed that these genes may exist in chromosomal DNA.

  • PDF

Development of Streptococcus sanguinis-, Streptococcus parasanguinis-, and Streptococcus gordonii-PCR Primers Based on the Nucleotide Sequences of Species-specific DNA Probes Screened by Inverted Dot Blot Hybridization

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • 제38권2호
    • /
    • pp.43-49
    • /
    • 2013
  • The objective of this study was to develop PCR primers that are specific for Streptococcus sanguinis, Streptococcus parasanguinis, and Streptococcus gordonii. We designed the S. sanguinis-, S. parasanguinis-, and S. gordonii-specific primers, Ssa21-F3/Ssa21-R2, Spa17-F/Spa17-R, and Sgo41-F1/Sgo41-R1 respectively, based on the nucleotide sequences of the Ssa21, Spa17, and Sgo41 DNA probes that were screened using inverted dot blot hybridization (IDBH). The species-specificity of these primers was assessed against 43 strains of mitis group streptococci, including clinical strains of S. sanguinis, S. parasanguinis, and S. gordonii. The resulting PCR data revealed that species-specific amplicons had been obtained from all strains of the target species tested, and that none of these amplicons occurred in any other strains from other species. These results suggest that the Ssa21-F3/Ssa21-R2, Spa17-F/Spa17-R, and Sgo41-F1/Sgo41-R1 primers may be useful in detecting S. sanguinis, S. parasanguinis, and S. gordonii at the species level, respectively.

Embryo sexing methods in bovine and its application in animal breed

  • Bora, Shelema Kelbessa
    • 한국동물생명공학회지
    • /
    • 제37권2호
    • /
    • pp.80-86
    • /
    • 2022
  • The ability to determine the sex of bovine embryos before the transfer is advantageous in livestock management, especially in dairy production, where female calves are preferred in milk industry. The milk production of female and male cattle benefits both the dairy and beef industries. Pre-implantation sexing of embryos also helps with embryo transfer success. There are two approaches for sexing bovine embryos in farm animals: invasive and non-invasive. A non-invasive method of embryo sexing retains the embryo's autonomy and, as a result, is less likely to impair the embryo's ability to move and implant successfully. There are lists of non-invasive embryo sexing such as; Detection of H-Y antigens, X-linked enzymes, and sexing based on embryo cleavage and development. Since it protects the embryo's autonomy, the non-invasive procedure is considered to be the safest. Invasive methods affect an embryo's integrity and are likely to damage the embryo's chances of successful transformation. There are different types of invasive methods such as polymerase chain reaction, detection of male chromatin Y chromosome-specific DNA probes, Loop-mediated isothermal amplification (LAMP), cytological karyotyping, and immunofluorescence (FISH). The PCR approach is highly sensitive, precise, and effective as compared to invasive methods of farm animal embryonic sexing. Invasive procedures, such as cytological karyotyping, have high accuracy but are impractical in the field due to embryonic effectiveness concerns. This technology can be applicable especially in the dairy and beef industry by producing female and male animals respectively. Enhancing selection accuracy and decreasing the multiple ovulation embryo transfer costs.

Rapid Identification of Ginseng Cultivars (Panax ginseng Meyer) Using Novel SNP-Based Probes

  • Jo, Ick-Hyun;Bang, Kyong-Hwan;Kim, Young-Chang;Lee, Jei-Wan;Seo, A-Yeon;Seong, Bong-Jae;Kim, Hyun-Ho;Kim, Dong-Hwi;Cha, Seon-Woo;Cho, Yong-Gu;Kim, Hong-Sig
    • Journal of Ginseng Research
    • /
    • 제35권4호
    • /
    • pp.504-513
    • /
    • 2011
  • In order to develop a novel system for the discrimination of five ginseng cultivars (Panax ginseng Meyer), single nucleotide polymorphism (SNP) genotyping assays with real-time polymerase chain reaction were conducted. Nucleotide substitution in gDNA library clones of P. ginseng cv. Yunpoong was targeted for the SNP genotyping assay. From these SNP sites, a set of modified SNP specific fluorescence probes (PGP74, PGP110, and PGP130) and novel primer sets have been developed to distinguish among five ginseng cultivars. The combination of the SNP type of the five cultivars, Chungpoong, Yunpoong, Gopoong, Kumpoong, and Sunpoong, was identified as 'ATA', 'GCC', 'GTA', 'GCA', and 'ACC', respectively. This study represents the first report of the identification of ginseng cultivars by fluorescence probes. An SNP genotyping assay using fluorescence probes could prove useful for the identification of ginseng cultivars and ginseng seed management systems and guarantee the purity of ginseng seed.