• Title/Summary/Keyword: DNA polymerase

Search Result 1,783, Processing Time 0.031 seconds

Efficient Cloning of the Genes for RNA Polymerase Sigma-like Factors from Actinomycetes

  • Kim, Soon-Ok;Hyun, Chang-Gu;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.280-283
    • /
    • 1998
  • We have cloned the RNA polymerase sigma-like factors from a wide range of actinomycetes by using specific primers with the polymerase chain reaction (PCR). The specific oligonucleotide primers were designed on the basis of amino acid sequences of conserved regions from HrdA, B, D of Streptomyces griseus as well as from the rpoD box of many eubacteria. The consensus sequences were from the rpoD box and helix-turn-helix motif involved in -35 recognition. The designed primers were successfully applied to amplify the DNA fragments of the hrd homolog genes from 8 different strains of actinomycetes which produce a wide variety of important antibiotics. The 480 bp of the DNA fragment was amplified from all 8 strains, and it was identified as a part of hrdA and hrdB as we designed. The deduced amino acid sequence of PCR-amplified DNA fragments were highly homologous to those of other known RNA polymerase sigma factors of S. griseus and Streptomyces aureofaciens. Therefore, this study with specifically designed primers will support rapid cloning of the RNA polymerase sigma factors which recognize different classes of promoters from actinomycetes, and it will also be helpful in understanding the relationship of promoters and sigma factors leading to heterogeneity of RNA polymerases in actinomycetes.

  • PDF

Effects of Polyamines on DNA Synthesis in Nicotiana tabacum L. Suspension Cultured Cells (담배(Nicotiana tabacum L.) 현탁배양 세포에서 DNA 합성에 미치는 Polyamine의 효과)

  • 남경희
    • Journal of Plant Biology
    • /
    • v.36 no.1
    • /
    • pp.19-27
    • /
    • 1993
  • Effects of polyamines on DNA synthesis were studied in synchronized culture of Nicotiana tabacum L. When DFMO and DFMA, inhibitors of ornithine decarboxylase and arginine decarboxylase, respectively were initially applied to the cells, the polyamine contents were rapidly dropped and [methyl-3H] thymidine incorporation into DNA was markedly reduced during the early stage of culture period. Inhibition of DNA synthesis, however, was partially reversed when these inhibitors were applied simultaneously with putrescine. In addition, exogenous administration of putrescine also increased the DNA synthesis during the all over the culture period. In vitro activity of DNA polymerase from Nicotiana tabacum L. was promoted by increasing concentrations of polyamines in the reaction mixture. Maximal activity was shown at 5 mM putrscine, 0.5 mM spermidine and spermine, respectively. Lack of Mg2+ ion in the reaction buffer resulted in an inhibition of the enzyme activity by about 30%. The inhibition could not be completely reversed by application of polyamines at optimal concentrations. These results suggest that polyamines promote the DNA synthesis in vivo and in vitro by stabilizing the DNA-helix upon binding to negatively charged groups on DNA or increasing the activity of DNA polymerase in Nicotiana tabacum L.

  • PDF

Association of Two Polymorphisms of DNA Polymerase Beta in Exon-9 and Exon-11 with Ovarian Carcinoma in India

  • Khanra, Kalyani;Panda, Kakali;Bhattacharya, Chandan;Mitra, A.K.;Sarkar, Ranu;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1321-1324
    • /
    • 2012
  • Background: DNA polymerase beta ($pol{\beta}$) is a key enzyme in the base excision repair pathway. It is 39kDa protein, with two subunits, one large subunit of 31 kDa having catalytic activity between exon V to exon XIV, and an 8 kDa smaller subunit having single strand DNA binding activity. Exons V to VII have double strand DNA binding activity, whereas exons VIII to XI account for the nucleotidyl transferase activity and exons XII to XIV the dNTP selection activity. Aim: To examine the association between $pol{\beta}$ polymorphisms and the risk of ovarian cancer, the present case control study was performed using 152 cancer samples and non-metastatic normal samples from the same patients. In this study, mutational analysis of $pol{\beta}$ genomic DNA was undertaken using primers from exons IX to XIV - the portion having catalytic activity. Results: We detected alteration in DNA polymerase beta by SSCP. Two specific heterozygous point mutations of $pol{\beta}$ were identified in Exon 9:486, A->C (polymorphism 1; 11.18%) and in Exon 11:676, A->C (polymorphism 2; 9.86%). The correlation study involving polymorphism 1 and 4 types of tissue showed a significant correlation between mucinous type with a Pearson correlation value of 4.03 (p=0.04). The association among polymorphism 2 with serous type and stage IV together have shown Pearson ${\chi}^2$ value of 3.28 with likelihood ratio of 4.4 (p=0.07) with OR =2.08 (0.3-14.55). This indicates that there is a tendency of correlation among polymorphism 2, serous type and stage IV, indicating a risk factor for ovarian cancer. Conclusion: Hence, the results indicate that there is a tendency for $pol{\beta}$ polymorphisms being a risk factor for ovarian carcinogenesis in India.

A Possible Target for the Heat Inactivation of SCK Tumor Cells

  • 강만식;정주영
    • The Korean Journal of Zoology
    • /
    • v.32 no.4
    • /
    • pp.305-313
    • /
    • 1989
  • The present investigation aims at inquiring into a possible target for the heat inactivation of SCK tumor cells by comparing the kinetics of cell survival, rate of protein synthesis, and DNA polymerase activity in the presence of heat protector or heat sensitirer. A possible conclusion to be drawn from the present experiment is that there is no direct correlation between cell death and decrease in the rate of protein synthesis, but that the loss of DNA polvmerase $\beta$ activity correlates quite well with cell inactivation. Thus, protein degrada-tion and/or abnormal protein synthesis causes cell inactivation innireuv, possibly by altering the cellular environment which in turn affects the DNA polymerase $\beta$ activity. Accordingly, further studies, dealing with the correlation between changes in the cellular environment and DNA polymerase $\beta$ activity, are needed to set insight into a possible target for the heat inactivation of cells. 본 연구는 열보호제 또는 열증감제의 존재하에서 세포 생존곡선, 단백질 합성률, DNA 중합효소 $\beta$의 활성변화를 비교 검토함으로써 SCK 종양세포가 열에 의해서 불활성화될 때의 표적이 무엇인지를 밝혀보기 위해서 수행되었다. 본 실험의 결과로 추정하건대 열에 의한 세포치사는 단백질 합성률의 변화와는 직접적인 연관성이 없으나, DNA 중합효소 $\beta$의 활성도와는 밀접한 연관성이 있음을 알 수 있다. 즉, 단백질의 분해 또는 비정상적인 단백질의 합성이 세포의 환경을 변화시키고 이것이 DNA 중합효소 $\beta$의 활성에 영향을 미침으로써 간접적으로 세포의 치사를 초래할 것으로 짐작할 수 있다. 따라서, 세포의 열불화성화의 표적을 좀더 분명히 밝히기 위해서는 세포의 환경변화와 DNA 중합효소 $\beta$의 활성과의 관계를 추구하는 연구가 수행되어야 할 것으로 사료된다.

  • PDF

Enhancement of Efficiency for Polymerase Chain Reaction Using Nanoparticle-Coated Graphene Oxide

  • Ju, Min-Yeong;Baek, Seung-Hun;Kim, Eun-Ju;Nguyen, Nguyen Le Thao;Park, Chan-Yeong;Park, Tae-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.375.1-375.1
    • /
    • 2016
  • Polymerase chain reaction (PCR) has revolutionized genetics and become one of the most popular techniques in modern biological and medical sciences. It can be used not only as an in vitro DNA amplification method but also used in many bioassay applications. The PCR can be used to exponentially produce a large number of DNA copies from a small quantity of DNA molecules in a few hours. However, as unwanted DNA fragments are also often manufactured, the amplification efficiency of PCR is decreased. To overcome this limitation, several nanomaterials have been employed to increase the specificity of the PCR reaction. Recently, graphene has attracted a great interest for its excellent electron transfer, thermal and biocompatibility. Especially, gold nanoparticle-coated graphene oxide (GO/AuNPs) led to enhance electron and thermal transfer rate and low-charge transfer resistance. Therefore, we report the development of a demonstration for the PCR efficiency using a large-scale production of the GO and combination of gold nanoparticles. Because a thermal conductivity is an important factor for improving the PCR efficiency in different DNA polymerases and different size samples. When PCR use GO/AuNPs, the result of transmission electron microscopy and real-time quantitative PCR (qPCR) showed an enhanced PCR efficiency. We have demonstrated that GO/AuNPs would be simply outperformed for enhancing the specificity and efficiency of DNA amplification procedure.

  • PDF

Exon 8-9 Mutations of DNA Polymerase β in Ovarian Carcinoma Patients from Haldia, India

  • Khanra, Kalyani;Panda, Kakali;Mitra, A.K.;Sarkar, Ranu;Bhattacharya, Chandan;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4183-4186
    • /
    • 2012
  • Background: Ovarian cancer is the number one killer among all the gynecological cancers. We undertook association study to identify potential alterations in the genomic DNA of a DNA repair gene, DNA polymerase beta ($pol{\beta}$), involved in base excision repair (BER), in ovarian carcinomas of patients from Haldia, India. Mutations, splice variants have been reported earlier in different tumors other than ovarian tumors. Aim: In this study we explored the possibility of association of any mutation of $pol{\beta}$ (Exon 8) with prognosis in 152 ovarian cancer samples. Results: Alteration in the exon 8 region (Exon 8:468, $A{\rightarrow}C$; 15.1%) was noted among fifty seven polymorphism positive samples. Alteration in the intervening sequence 8 (IVS8, -25, $A{\rightarrow}C$; 3.9%) was also noted. All alterations are heterozygous in nature. Conclusions: We found no significant association among the samples from serous type, stage IV, and the $pol{\beta}$ mutations ($P{\leq}0.01$). Only a slight tendency of association was evident between IVS8, -25, A to C; and stage III. Further analysis with a larger number of samples is needed.

Genetic Similarity and Diversity in Crucian Carp(Carassius carassius) Populations by Polymerase Chain Reaction-Random Amplified Polymorphic DNAs

  • Yoon, Jong-Man;Kim, Tae-Sun;Kim, Jong-Yeon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.332-333
    • /
    • 2001
  • Genomic DNA was extracted from the blood of the freshwater crucian carp(Carassius carassius) from Kunsan in Korea, representing genetic similarity by polymerase chain reaction amplification of DNA as twelve of arbitrary primers. The electrophoretic analysis of polymerase chain reaction-random amplified polymorphic DNAs(PCR-RADP) products showed the high levels of similarity between different individuals in crucian carp.

  • PDF

Nucleotide Insertion Fidelity of Human Hepatitis B Viral Polymerase

  • Kim, Youn-Hee;Hong, Young-Bin;Suh, Se-Won;Jung, Gu-Hung
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.126-132
    • /
    • 2000
  • The hepadnaviruses replicate their nucleic acid through a reverse transcription step. The MBP-fused HBV polymerase was expressed in E. coli and purified by using amylase affinity column chromatography. The purified protein represented DNA-dependent DNA polymerase activity. In this report, the MBP-HBV polymerase was shown to lack 3'$\rightarrow$5' exonuclease activity, like other retroviral RTs. The ratio of the insertion efficiency for the wrong versus right vase pairs indicates the misinsertion frequency (f). The nucleotide insertion fidelity (1/f), observed with the MBP-HBV polymerase and HIV-1 RT, was between 60 and 54,000, and between 50 and 73,000, respectively, showing that they are in close range. A relatively efficient nucleotide incorporation by the MBP-HBV polymerase was observed with a specificity of three groups: (1) A : T, T : A>C : G, G : C (matched pairs), (2) A : C, C : A>G: T, T : G (purine-pyrimidine and pyrimidine-purine mispairs), and (3) C : C, A : A, G : G, T : T>T : C, C : T>A : G, G : A (purine-purine or pyrimidine-pyrimidine mispairs), and their order is (1)>(2)>(3). The data from the nucleotide insertion fidelity by the MBP-HBV polymerase suggest that the HBV polymerase may be as error-prone as HIV-1 RT.

  • PDF