• Title/Summary/Keyword: DNA polymerase

Search Result 1,790, Processing Time 0.028 seconds

Identification of Beauveria spp. Isolated from Mulberry Longicorn Beetle (Apriona germari Hope) using Polymerase Chain Reaction (뽕나무 하늘소(Apriona germari Hope)로부터 Beauveria속 사상균의 분리 및 PCR에 의한 동정)

  • 서종복;진병래
    • Journal of Sericultural and Entomological Science
    • /
    • v.37 no.2
    • /
    • pp.167-171
    • /
    • 1995
  • To develope a microbial pesticide for the control of mulberry longicorn beetle, Apriona germari, Beauveria spp. were isolated from the infected Apriona germari larvae. The morphology of Beauveria spp. was observed by phase contrast and scanning electron microscope. In addition, the Beauveria spp. isolated from Apriona germari were identified by the random amplification of polymorphic DNA using polymerase chain reaction. The results showed that the Beauveria spp., SFB-1A and SFB-3A, isolated from Apriona germari were identified with B. bassiana and B. brongniartii, respectively, suggesting that the random amplification of polymorphic DNA is effective for the identification of Beauveria spp.

  • PDF

Reverse Transcription and Amplification of Halobacterial gvp Genes with Polymerase Chain Reaction Method (Polymerase Chain Reaction 방법에 의한 Halobacteria gvp 유전자의 역전사 및 증폭)

  • 윤병수;이상섭
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.456-459
    • /
    • 1992
  • The genes of Halohacteria. gvpD and gvpE. take part in formation of gas vesicle. These mRNA cause a lot of experimental prohlems due to its eharacteristic instahility in the analysis of transcripts. This study allowed easy cloning and sequencing of RNA hy substituting a stable complementary DNA for the mRNA of the genes for an analysis. The weak 111 RNA was reverse transcribed to DNA using reverse transcriptase. and was amplified using PCR method. The transcripts confirmed in this ~,tudy have not heen round in the northern hybridization covering almost all ranges of ORF of the gene. gvpD.

  • PDF

New PCR of DNA Computing (DNA 컴퓨팅의 새로운 PCR 연산)

  • 김정숙
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.10
    • /
    • pp.1349-1354
    • /
    • 2001
  • In the Traveling Salesman Problem(TSP), a set of N cities is given and the problem is to find the shortest route connecting them all, with no city visited twice and return to the city at which it started. Since TSP is a well-known combinatorial optimization problem and belongs to the class of NP-complete problems, various techniques are required for finding optimum or near optimum solution to the TSP. Especially DNA computing, which uses real bio-molecules to perform computations supported by molecular biology, has been studied by many researchers to solve NP-complete problem using massive parallelism of DNA computing. Though very promising, DNA computing technology of today is inefficiency because the effective computing models and operations reflected the characteristics of bio-molecules have not been developed yet. In this paper, I design new Polymerase Chain Reaction(PCR) operations of DNA computing to solve TSP.

  • PDF

A study on development of plastic vial tube for the DNA detection process (DNA 검출 공정 전용 플라스틱 튜브형 시험관 개발에 관한 연구)

  • Choi, Kyu-wan;La, Moon-woo;Gang, Jung-hee;Chang, Sung-ho
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.35-40
    • /
    • 2017
  • PCR(Polymerase chain reaction) is a technique to replicate and amplify a desired part of DNA. It is used in various aspects such as DNA fingerprint analysis and rare DNA amplification of an extinct animal. Especially in the medical diagnosis field, it provides various measurement methods at the molecular level such as genetic diagnosis, and is a basic tool for molecular diagnostics. The internal shape of the plastic vial tube for PCR analysis used in the DNA detection process, and the surface roughness and internal cleanliness can affect detection and discrimination results. The plastic vial tube demanded by the developer of the PCR analysis equipment should be changed to a structure that eliminates the residual washing solution in the washing process to ensure the internal cleanliness. Thus the internal structure and the internal surface design for improving the PCR amplification efficiency are key issues to develop the plastic vial tube for the DNA detection process.

Detection of Plasmodiophora brassicae by Using Polymerase Chain Reaction (PCR을 이용한 Plasmodiophora brassicae의 검출)

  • 지희윤;김완규;조원대;지형진;최용철
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.589-593
    • /
    • 1998
  • DNA amplification by polymerase chain reaction (PCR) was used to specifically detect Plasmodiophora brassicae, causing clubroot of crucifers. On the basis of DNA sequence informations, an oligonucleotide primer set specific for the pathogen was designed form small subunit gene (18S-like) and internal transcribed spacer (ITS) region of ribosomal DNA. Primer ITS 5/PB-C produced an amplification product of approximately 520 bp in length with DNA from P. brassicae. However, no amplification product was produced with DNAs from several soil-borne fungi, Didymella bryoniae and Rhizopus stolonifer. Using these primers, the clubroot pathogen was readily detected from infected roots of crucifers, but not from healthy roots. Southern hybridization analysis further confirmed that the amplification product was originated from P. brassicae.

  • PDF

Distribution of ddr (DNA damage response) Genes among Species of Deinococcus

  • Lim, Sangyong;Jung, Sunwook;Joe, Minho;Kim, Dongho
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.289-295
    • /
    • 2010
  • The bacterium Deinococcus radiodurans is one of the most resistant organisms to the effects of ionizing radiation and other DNA-damaging agents. In this study, distributions of 10 ddr (DNA damage response) genes were investigated in 8 species of Deinococcus by polymerase chain reaction (PCR). We have compared the sequences of ddr genes of D. radiodurans, D. geothermalis and D. deserti, and selected primers which are suitable for the detection of ddr in different species of Deinococcus. A sequence homology search and PCR assay showed that ddrO, which encodes a global regulator of the radiation-desiccation response, was most well conserved in the Deinococcus lineage.

Peptoniphilus mikwangii-specific quantitative real-time polymerase chain reaction primers

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.44 no.3
    • /
    • pp.96-100
    • /
    • 2019
  • The purpose of this study was to develop Peptoniphilus mikwangii-specific quantitative real-time polymerase chain reaction (qPCR) primers based on the 16S ribosomal RNA (16S rDNA) gene. The specificity of the primers was determined by conventional PCR using 29 strains of 27 oral bacterial species including P. mikwangii. The sensitivity of the primers was determined by qPCR using the purified genomic DNA of P. mikwangii KCOM $1628^T$ (40 ng to 4 fg). The data showed that the qPCR primers (RTB134-F4/RTB134-R4) could detect P. mikwangii strains exclusively and as little as 40 fg of the genomic DNA of P. mikwangii KCOM $1628^T$. These results suggest that the developed qPCR primer pair can be useful for detecting P. mikwangii in epidemiological studies of oral bacterial infectious diseases.

Effect of Rifampicin on the Biosynthesis of Nucleic Acid in Chloroplast isolated from Chlorella ellipsoidea (Chlorella 세포에서 분리한 엽록체의 핵산합성에 미치는 rifampicin의 영향)

  • 이종삼;정희숙
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.276-287
    • /
    • 1986
  • Chlorella ellipsoidea were cultured in the media containing rifampicin for 7 days. Aliquot cells were taken out after the inoculation and at intervals during cultivation and growth rate of Chlorella cells was measured. In order to investigate the effect of rifampicin on the nucleic acid synthesis, nucleic acid and RNA polymerase were extracted from chloroplast isolated from these cells, and the contents of nucleic acid and activity of enzyme were measured to compared with those of the control. The inhibitory concentration of rifampicin on growth was 80 ppm. The DNA contents in chloroplasts isolated were decreased 60% to compared with control, whole cells were markedly decreased 70% by rifampicin. The contents of base in the RNA were decreased 46% by rifampicin in shole cell, and 77% of base contents were decreased in chloroplast. Rifampicin also inhibited the activity of RNA polymerase, therefore whole cell was decreased 10% of activity and chloroplasts were decreased 42% of activity.

  • PDF