• 제목/요약/키워드: DNA nanotechnology

검색결과 29건 처리시간 0.027초

바이오소자 기술 (Biodevice Technology)

  • 최정우;이범환
    • Korean Chemical Engineering Research
    • /
    • 제44권1호
    • /
    • pp.1-9
    • /
    • 2006
  • 생물체를 구성하는 세포의 기능과 구성요소 간 상호작용 메커니즘을 인공적으로 모방하여 바이오물질 박막으로 구성된 바이오소자는 의료 진단, 신약 스크리닝, 전자소자, 생물공정, 환경오염 물질 측정 등 다양한 산업 분야에 응용되고 있다. 단백질, DNA, 바이오색소, 세포 등의 생체물질을 칩 상에 고집적으로 배열하여 구성된 바이오 소자로서 바이오 전자소자(생물분자 광다이오드, 바이오 정보저장소자, 바이오 전기발광 소자), DNA칩, 단백질칩, 및 세포칩 등이 개발되어 오고 있다. 생체물질 고정화 기술, 마이크로 및 나노수준의 패터닝기술, 소자 구성 기술, 바이오 멤스 기술의 융합을 통해 바이오소자는 구현되며, 최근에는 나노기술의 적용에 의하여 나노바이오소자도 구현이 가능하다. 본 논문에서는 현재까지 개발된 다양한 바이오소자의 제작 기술과 응용에 대하여 소개하고 향후의 발전 방향에 대하여 다룬다.

Acanthamoeba in Southeast Asia - Overview and Challenges

  • Bunsuwansakul, Chooseel;Mahboob, Tooba;Hounkong, Kruawan;Laohaprapanon, Sawanya;Chitapornpan, Sukhuma;Jawjit, Siriuma;Yasiri, Atipat;Barusrux, Sahapat;Bunluepuech, Kingkan;Sawangjaroen, Nongyao;Salibay, Cristina C.;Kaewjai, Chalermpon;Pereira, Maria de Lourdes;Nissapatorn, Veeranoot
    • Parasites, Hosts and Diseases
    • /
    • 제57권4호
    • /
    • pp.341-357
    • /
    • 2019
  • Acanthamoeba, one of free-living amoebae (FLA), remains a high risk of direct contact with this protozoan parasite which is ubiquitous in nature and man-made environment. This pathogenic FLA can cause sight-threatening amoebic keratitis (AK) and fatal granulomatous amoebic encephalitis (GAE) though these cases may not commonly be reported in our clinical settings. Acanthamoeba has been detected from different environmental sources namely; soil, water, hotspring, swimming pool, air-conditioner, or contact lens storage cases. The identification of Acanthamoeba is based on morphological appearance and molecular techniques using PCR and DNA sequencing for clinico-epidemiological purposes. Recent treatments have long been ineffective against Acanthamoeba cyst, novel anti-Acanthamoeba agents have therefore been extensively investigated. There are efforts to utilize synthetic chemicals, lead compounds from medicinal plant extracts, and animal products to combat Acanthamoeba infection. Applied nanotechnology, an advanced technology, has shown to enhance the anti-Acanthamoeba activity in the encapsulated nanoparticles leading to new therapeutic options. This review attempts to provide an overview of the available data and studies on the occurrence of pathogenic Acanthamoeba among the Association of Southeast Asian Nations (ASEAN) members with the aim of identifying some potential contributing factors such as distribution, demographic profile of the patients, possible source of the parasite, mode of transmission and treatment. Further, this review attempts to provide future direction for prevention and control of the Acanthamoeba infection.

Targeting HSP90 Gene Expression with 17-DMAG Nanoparticles in Breast Cancer Cells

  • Mellatyar, Hassan;Talaei, Sona;Nejati-Koshki, Kazem;Akbarzadeh, Abolfazl
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권5호
    • /
    • pp.2453-2457
    • /
    • 2016
  • Background: Dysregulation of HSP90 gene expression is known to take place in breast cancer. Here we used D,L-lactic-co-glycolic acid-polyethylene glycol-17-dimethylaminoethylamino-17-demethoxy geldanamycin (PLGA-PEG-17DMAG) complexes and free 17-DMAG to inhibit the expression of HSP90 gene in the T47D breast cancer cell line. The purpose was to determine whether nanoencapsulating 17DMAG improves the anti-cancer effects as compared to free 17DMAG. Materials and Methods: The T47D breast cancer cell line was grown in RPMI 1640 supplemented with 10% FBS. Encapsulation of 17DMAG was conducted through a double emulsion method and properties of copolymers were characterized by Fourier transform infrared spectroscopy and H nuclear magnetic resonance spectroscopy. Assessment of drug cytotoxicity was by MTT assay. After treatment of T47D cells with a given amount of drug, RNA was extracted and cDNA was synthesized. In order to assess HSP90 gene expression, real-time PCR was performed. Results: Taking into account drug load, IC50 was significant decreased in nanocapsulated 17DMAG in comparison with free 17DMAG. This finding was associated with decrease of HSP90 gene expression. Conclusions: PLGA-PEG-17DMAG complexes can be more effective than free 17DMAG in down-regulating of HSP90 expression, at the saesm time exerting more potent cytotoxic effects. Therefore, PLGA-PEG could be a superior carrier for this type of hydrophobic agent.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

정상적인 인간유방상피세포인 MCF-12세포에서 유방암 항에스토젠 내성인자-3 (BCAR3)에 의한 c-Jun 발현 유도 연구 (Induction of c-Jun Expression by Breast Cancer Anti-estrogen Resistance-3 (BCAR3) in Human Breast MCF-12A Cells)

  • 오명주;김지현;전병학
    • 생명과학회지
    • /
    • 제26권12호
    • /
    • pp.1383-1391
    • /
    • 2016
  • 타목시펜과 같은 항에스트로젠은 ER 양성의 초기 유방암 환자에게 사용되고 있다. 그러나 대부분의 환자에서 이 항에스트로젠에 대한 내성 발현은 불가피하게 발생한다. BCAR3 유전자는 사람의 에스트로젠 의존성 유방암에서 tamoxifen 내성유도를 야기하는 단백질로 발견되었다. 우리들은 이전에 이 BCAR3 유전자가 세포주기 진행과 EGF와 인슐린에 의한 DNA 합성 신호전달경로를 조절한다고 보고하였다. 본 연구에서는, 비종양성 정상적인 인간유방상피세포인 MCF-12A세포에서 c-Jun 전자의 조절에 대한 BCAR3유전자의 기능적인 역할을 조사하였다. BCAR3의 일시적인 발현 또는 지속적인 발현이 c-Jun mRNA와 단백질의 발현을 증가하는 것을 발견하였다. 또한 BCAR3 발현 유전자의 미세주사에 의해 세포 증식이 증가하였다. 이 c-Jun의 발현 증가는 promoter의 활성화를 통해 일어난다. 또한 BCAR3에 의한 c-Jun 발현 유도가 억제성 Ras, Rac, Rho에 의해 억제되었다. 다음으로 EGF 성장인자에 의한 c-Jun 발현 유도에 대한 BCAR3의 영향을 단일 세포 미세주사법에 의해 조사하였다. BCAR3 항체, BCAR3의 siRNA와 같은 BCAR3의 기능을 억제할 수 있는 물질들을 세포로 미세주사하면 EGF에 의한 c-Jun의 발현을 억제하였지만, IGF-1 성장인자에 의한 c-Jun 발현은 억제하지 않았다. 이러한 결과들로부터 BCAR3는 c-Jun 단백질 발현 유도와 세포 증식에 중요한 역할을 하며, 여기에는 Ras, Rac, Rho와 같은 GTPase들이 필요하다는 것을 발견하였다.

Anti-proliferative Activities of Metallic Nanoparticles in an in Vitro Breast Cancer Model

  • Loutfy, Samah A;Al-Ansary, Nadia A;Abdel-Ghani, Nour T;Hamed, Ahmed R;Mohamed, Mona B;Craik, James D;Eldin, Taher A. Salah;Abdellah, Ahmed M;Hussein, Yassmein;Hasanin, MTM;Elbehairi, Serag Eldin I
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.6039-6046
    • /
    • 2015
  • Aims: To investigate effect of metallic nanoparticles, silver (AgNPs) and gold nanoparticles (AuNPs) as antitumor treatment in vitro against human breast cancer cells (MCF-7) and their associated mechanisms. This could provide new class of engineered nanoparticles with desired physicochemical properties and may present newer approaches for therapeutic modalities to breast cancer in women. Materials and Methods: A human breast cancer cell line (MCF-7) was used as a model of cells. Metallic nanoparticles were characterized using UV-visible spectra and transmission electron microscopy (TEM). Cytotoxic effects of metallic nanoparticles on MCF-7 cells were followed by colorimetric SRB cell viability assays, microscopy, and cellular uptake. Nature of cell death was further investigated by DNA analysis and flow cytometry. Results: Treatment of MCF-7 with different concentrations of 5-10nm diameter of AgNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $6.28{\mu}M$, whereas treatment of MCF-7 with different concentrations of 13-15nm diameter of AuNPs inhibited cell viability in a dose-dependent manner, with IC50 value of $14.48{\mu}M$. Treatment of cells with a IC50 concentration of AgNPs generated progressive accumulation of cells in the S phase of the cell cycle and prevented entry into the M phase. The treatment of cells with IC50 concentrations of AuNPs similarly generated progressive accumulation of cells in sub-G1 and S phase, and inhibited the entrance of cells into the M phase of the cell cycle. DNA fragmentation, as demonstrated by electrophoresis, indicated induction of apoptosis. Conclusions: Our engineered silver nanoparticles effectively inhibit the proliferation of human breast carcinoma cell line MCF-7 in vitro at high concentration ($1000{\mu}M$) through apoptotic mechanisms, and may be a beneficial agent against human carcinoma but further detailed study is still needed.

Multiplex PCR 기법을 이용한 보통사마귀 내 인유두종바이러스 검출 및 분류 (Detection and Typing of Human Papillomavirus in Cutaneous Common Warts by Multiplex Polymerase Chain Reaction)

  • 최순용;임종호;김은정;김혜성;김범준;강훈;박영민
    • 생명과학회지
    • /
    • 제21권7호
    • /
    • pp.947-952
    • /
    • 2011
  • 현재까지 다수의 역학연구를 통해 피부에 발생한 보통사마귀에서 제 1, 2, 3, 4, 7, 10, 27, 57 및 65형의 인유두종바이러스가 검출되었다. 그러나 기존의 중합효소연쇄반응(conventional polymerase chain reaction, PCR)을 이용하는 경우 절차가 복잡하여 시간이 오래 걸리는 단점이 있었다. 이번 연구를 통해 저자들은 보통사마귀에서 가장 흔히 검출되는 6가지 유전자형의 인유두종바이러스를 한번에 확인 가능한 간편한 muliplex PCR의 개발을 목표로 하였다. 인유두종바이러스의 염기서열분석을 통해, L1에서 E6, 그리고 E2에서 L2 사이의 유전자간영역(intergenic region)으로 부터 6쌍의 primer를 고안하였으며, L1 유전자서열 분석을 통해 multiplex PCR의 특이성을 확인하였다. 총 129개의 조직표본 중 109개에서 제 1, 2, 3, 4, 27, 57형의 인유두종바이러스를 확인하였다. 이번 연구의 primer를 이용한 인유두종바이러스 검출의 민감도와 특이도는 각각 85%와 99.5%였다. 이러한 primer 세트로 인유두종바이러스가 검출되지 않은 20개의 조직표본의 경우, 또 다른 HPV primer를 사용한 추가적인 multiplex PCR을 시행하여 7개 표본에서 제 7형 및 65형의 인유두종바이러스가 검출되었다. 이상의 결과는 본 연구를 통해 새롭게 고안된 multiplex PCR 기법을 통해 보통사마귀에서의 인유두종바이러스를 보다 정확하고 빠르게 검출할 수 있다는 것을 보여 준다.

Comparison of Inhibitory Effect of 17-DMAG Nanoparticles and Free 17-DMAG in HSP90 Gene Expression in Lung Cancer

  • Mellatyar, Hassan;Akbarzadeh, Abolfazl;Rahmati, Mohammad;Ghalhar, Masoud Gandomkar;Etemadi, Ali;Nejati-Koshki, Kazem;Zarghami, Nosratallah;Barkhordari, Amin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8693-8698
    • /
    • 2014
  • Background: Up-regulation of hsp90 gene expression occurs in numerous cancers such as lung cancer. D,L-lactic-co-glycolic acid-poly ethylene glycol-17-dimethylaminoethylamino-17-demethoxy geldanamycin (PLGA-PEG-17DMAG) complexes and free 17-DMAG may inhibit the expression. The purpose of this study was to examine whether nanocapsulating 17DMAG improves the anti cancer effect over free 17DMAG in the A549 lung cancer cell line. Materials and Methods: Cells were grown in RPMI 1640 supplemented with 10% FBS. Capsulation of 17DMAG is conducted through double emulsion, then the amount of loaded drug was calculated. Other properties of this copolymer were characterized by Fourier transform infrared spectroscopy and H nuclear magnetic resonance spectroscopy. Assessment of drug cytotoxicity on the grown of lung cancer cell line was carried out through MTT assay. After treatment, RNA was extracted and cDNA was synthesized. In order to assess the amount of hsp90 gene expression, real-time PCR was performed. Results: In regard to the amount of the drug load, IC50 was significant decreased in nanocapsulated(NC) 17DMAG in comparison with free 17DMAG. This was confirmed through decrease of HSP90 gene expression by real-time PCR. Conclusions: The results demonstrated that PLGA-PEG-17DMAG complexes can be more effective than free 17DMAG in down-regulating of hsp90 expression by enhancing uptake by cells. Therefore, PLGA-PEG could be a superior carrier for this kind of hydrophobic agent.

New Gene Profiling in Determination of Breast Cancer Recurrence and Prognosis in Iranian Women

  • Poorhosseini, Seyed Mohammad;Hashemi, Mohammad;Olyaei, Nasrin Alipour;Izadi, Amir;Moslemi, Elham;Ravesh, Zeinab;Hashemi-Gorji, Feyzollah;Kheiri, Hamid Reza;Yassaee, Vahid Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권sup3호
    • /
    • pp.155-160
    • /
    • 2016
  • Breast cancer (BC) is the second most common cancer in the world and by far the most frequent cancer among women, with an estimated 1.67 million new cancer cases diagnosed in 2012 (25% of all cancers). Polygene expression analysis is used to predict the prognosis and determine the most appropriate treatment regimen. The objective of this study was to examine the gene expression profiles of SIRT3, HRAS, LSP1, SCUBE2 and AP2A2 in Iranian women with BC.A total of 136 patients including healthy controls were categorized into three groups based on the relapse of the disease. Expression of desired genes in formalin-fixed, paraffin embedded tissues collected from all groups of participants was analyzed via the RT PCR method. RNA extraction and cDNA synthesis were performed then real-time quantitative PCR was carried out. Gene expression analysis revealed that the expression of SIRT3 was equal among patient and control groups. LSP1 was down regulated in all patient groups relative to controls but reduced expression in the metastatic group relative to the non-metastatic one was not significant. HRAS was significantly overexpressed in total and metastatic tumor samples versus normal but not in non-metastatic cases. SCUBE2 expression showed significant over-expression in both overall tumor samples and the non-metastatic group as compared to normal tissues. Gene expression level of AP2A2 in all groups was not detectable. Our data are compatible with a tumor suppressor role of LSP1 related to potential prognostic factor for tumor recurrence and outcome. This study for the first time assayed the prognostic value and changes in the expression of SIRT3, LSP1, HRAS, SCUBE2 and AP2A2 genes in women with breast cancer in the Iranian population and findings confirmed potential biomarker and prognostic capability of these genes. Such expression profiling data can critically improve prognosis and treatment decisions in cancer patients.