• Title/Summary/Keyword: DNA molecules

Search Result 663, Processing Time 0.025 seconds

Behavior in Solution and Mixing Ratio-Dependent Binding Modes of Carcinogenic Benzo[a]pyrene-7,8-dione to Calf Thymus DNA

  • Jin, Biao;Han, Sung Wook;Lee, Dong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3015-3020
    • /
    • 2014
  • The behavior of benzo[a]pyrene-7,8-dione (BPQ) in aqueous solution and its interaction with native DNA was investigated using conventional absorption and linear dichroism (LD) spectroscopy. The appearance of a broad absorption maximum at long wavelengths and its proportional relationship to solvent polarizability suggested that BPQ adopts a aggregated state for all solutions examined. Disappearance of this absorption band at higher temperatures in aqueous solution also supported BPQ aggregation. When associated with DNA absorption spectral properties were essentially the same as that in aqueous solution. However, two isosbestic wavelengths were found in the concentration-dependent absorption spectrum of the BPQ-DNA complex, suggesting the presence of at least two or more DNA-bound BPQ species. Both species produced $LD^r$ spectra whose magnitude in BPQ absorption region is larger or comparable to that in the DNA absorption region, suggesting that the molecular BPQ plane is near perpendicular relative to the local DNA helical axis. Therefore, BPQ molecules are aligned along the DNA stem in both DNA-aggregated BPQ species.

CD83 expression induced by CpG-DNA stimulation in a macrophage cell line RAW 264.7

  • Park, Min Chul;Kim, Dongbum;Lee, Younghee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.46 no.9
    • /
    • pp.448-453
    • /
    • 2013
  • CpG-DNA has various immunomodulatory effects in dendritic cells, B cells, and macrophages. While induction of cytokines by CpG-DNA has been well documented in macrophages, the expression of costimulatory molecules in CpG-DNA treated macrophages has not yet been defined. Therefore, we investigated the effects of CpG-DNA on the expression of costimulatory molecules in RAW 264.7 cells. The surface expression of CD80 was slightly increased and CD83 expression was significantly increased in response to CpG-DNA. However, the expression of CD86 and MHC class II was not changed. As expression of CD83 mRNA was also increased by CpG-DNA, CD83 expression is regulated at a transcriptional level. To understand the contribution of signaling pathways to CD83 induction, we used pathway specific inhibitors. The NF-${\kappa}B$ inhibitor significantly reduced surface expression of CD83 as well as phagocytic activity of RAW 264.7 cells. Therefore, CD83 expression may contribute to the immunostimulatory effects of CpG-DNA in macrophage cells.

Channel Capacity Analysis of DNA-based Molecular Communication with Length Encoding Mechanism

  • Xie, Jialin;Liu, Qiang;Yang, Kun;Lin, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2923-2943
    • /
    • 2021
  • The double helix structure of DNA makes it diverse, stable and can store information with high density, and these characteristics are consistent with the requirements of molecular communication for transport carriers. In this paper, a specific structure of molecular communication system based on DNA length coding is proposed. Transmitter (Tx) adopts the multi-layer golden foil design to control the release of DNA molecules of different lengths accurately, and receiver (Rx) adopts an effective and sensitive design of nanopore, and the biological information can be converted to the electric signal at Rx. The effect of some key factors, e.g., the length of time slot, transmission distance, the number of releasing molecules, the priori probability, on channel capacity is demonstrated exhaustively. Moreover, we also compare the transmission capacity of DNA-based molecular communication (DNA-MC) system and concentration-based molecular communication (MC) system under the same parameter setting, and the peak value of capacity of DNA-MC system can achieve 0.08 bps, while the capacity of MC system remains 0.025 bps. The simulation results show that DNA-MC system has obvious advantages over MC system in saving molecular resources and improving transmission stability.

Determination of Active Site in PRD1 DNA Polymerase by Site-specific Mutagenesis (Site-specific Mutagenesis에 의한 PRD1 DNA Polymerase의 활성부위 결정)

  • 황정원;정구홍
    • Korean Journal of Microbiology
    • /
    • v.29 no.4
    • /
    • pp.209-214
    • /
    • 1991
  • The PRD1 DNA polymerase is a small multi-functional enzyme containing conserved amino acid sequences shared by family B DNA polymerases. Thus the PRD1 DNA polymerase provides an useful model system with which to study structure-functional relationships of DNA polymerase molecules. In order to investigate the functional and structural roles of the highly conserved amino acid sequences, we have introduced three mutations into a conserved amino acid of the PRD1 DNA polymerase. Genetic complememtation study indicated that each mutation inactivated DNA polymerase catalytic activity.

  • PDF

Monoclonal Antibody Recognizing Nervous System Specific Protein of Drosophila melanogaster (초파리 신경계특이적인 단일클론항체의 제작과 그 항원의 국재)

  • 윤춘식
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.571-575
    • /
    • 1998
  • The nerve system specific protein of Drosophila melanogaster was produced by using heads of flies as the antigen. The monoclonal antibody 6H6 recognized the disabled molecules that a kind of tyrosine kinase substrate by expres-sion cDNA library screening method. At the same time, the antibody also specifically recognized C-terminal region of disabled protein from 7427 to 8761bp by DNA sequencing. In early embryos, the localization of antigen appeared in the central nerve system. In adult flies, the antigen showed specific localization on the axon of optic nerve, cerebral nerve and thoracic nerve, and they also expressed on the muscular nerve. The molecules of disabled are expected to carry an important function in developing central nerve system. In adult flies, it is suggested that the disabled molecules have a role for muscular nerve as well as neural axon.

  • PDF

New PCR of DNA Computing (DNA 컴퓨팅의 새로운 PCR 연산)

  • 김정숙
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.10
    • /
    • pp.1349-1354
    • /
    • 2001
  • In the Traveling Salesman Problem(TSP), a set of N cities is given and the problem is to find the shortest route connecting them all, with no city visited twice and return to the city at which it started. Since TSP is a well-known combinatorial optimization problem and belongs to the class of NP-complete problems, various techniques are required for finding optimum or near optimum solution to the TSP. Especially DNA computing, which uses real bio-molecules to perform computations supported by molecular biology, has been studied by many researchers to solve NP-complete problem using massive parallelism of DNA computing. Though very promising, DNA computing technology of today is inefficiency because the effective computing models and operations reflected the characteristics of bio-molecules have not been developed yet. In this paper, I design new Polymerase Chain Reaction(PCR) operations of DNA computing to solve TSP.

  • PDF

F2 Gel Matrix - a Novel Delivery System for Immune and Gene Vaccinations

  • Tuorkey, Muobarak J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3061-3063
    • /
    • 2016
  • Exploiting the immune system to abolish cancer growth via vaccination is a promising strategy but that is limited by many clinical issues. For DNA vaccines, viral vectors as a delivery system mediate a strong immune response due to their protein structure, which could afflect the cellular uptake of the genetic vector or even induce cytotoxic immune responses against transfected cells. Recently, synthetic DNA delivery systems have been developed and recommended as much easier and simple approaches for DNA delivery compared with viral vectors. These are based on the attraction of the positively charged cationic transfection reagents to negatively charged DNA molecules, which augments the cellular DNA uptake. In fact, there are three major cellular barriers which hinder successful DNA delivery systems: low uptake across the plasma membrane; inadequate release of DNA molecules with limited stability; and lack of nuclear targeting. Recently, a polysaccharide polymer produced by microalgae has been synthesized in a form of polymeric fiber material poly-N-acetyl glucosamine (p-GlcNAc). Due its unique properties, the F2 gel matrix was suggested as an effective delivery system for immune and gene vaccinations.

Structure-function analysis of PRDI DNA polymerase

  • Jung, Guhung
    • The Microorganisms and Industry
    • /
    • v.16 no.3
    • /
    • pp.6-14
    • /
    • 1990
  • PRDI DNA polymerase is the smallest member of the family B DNA polymerase (Jung et al., 1987). This DNA polyerase is specified by bacteriophage PRDI which infects a wide variety of gram-negative bacteria(Mindich and Bamford, 1988). Because PRDI is highly amenable to genetic and biochemical manipulation, it is a convenient model system with which to study structure-function relationships of DNA polymerase molecules. To determine the functional roles of the highly conserved regions of the family B DNA polymerases, we have initiated site-directed mutagenesis with PRD1 DNA polymerase, and our results show that mutations at the conserved regions within PRD1 DNA polymerase inactivate polymerase complementing activity and catalytic activity.

  • PDF

Chiral Separation with DNA-Polyion Complex Membranes

  • Yoshikawa, Masakazu;Maruhashi, Motokazu;Ogata, Naoya
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.353-353
    • /
    • 2006
  • Deoxyribonucelic acid (DNA) molecules have a huge molecular weight so that DNA was reported to be a promising natural polymer to give durable films. Among many applications of DNA, the authors focused their attention on separation membranes derived from DNA because membranes will play an important role in environmental and energy related processes. DNA-polyion complex membranes were prepared from DNA and corresponding polycations. The DNA-polyion complex membranes showed chiral separation ability toward racemic amino acid mixtures.

  • PDF

Similarity of Intracellular Signaling Toward Apoptosis Following UVB and UVC Irradiation

  • Horikawa, Miwa;Matsuda, Naoki;Yoshida, Masahiro;Okumura, Yutaka;Watanabe, Masami;Mori, Toshio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.482-484
    • /
    • 2002
  • UV irradiation activates various intracellular signaling pathways causing cell death in a DNA damage-dependent and an independent manner. As DNA photoproducts, major forms of DNA damage, are maximally formed by UV light at 260-nm, short wavelength UV (UVC) is more harmful than middle wavelength UV (UVB). However, the differences or similarities in responses of DNA damage-independent intracellular signaling molecules to UVB and UVC are not elucidated. We examined activation of signaling molecules towards apoptosis in normal human fibroblastic cells after irradiation with UVB or UVC at a dose generating the equal amount of DNA photoproducts. Both UVB and UVC induced transient phosphorylation of ERK and sustained phosphorylation of p38. Phosphorylation of p53 at Ser15 and at Ser392 residues were also observed, which were inhibited by a phosphoinositide 3-kinase inhibitor, wortmannin. In contrast, an antioxidant N-acetyl-cysteine and a p38 inhibitor SB203580 suppressed only Ser392 phosphorylation, suggesting that UV-induced oxidative stress and p38 activation were involved in the phosphorylation of this site. The apoptic signals such as mitochondrial cytochrome C release and annexin V binding were then observed. Overall, no difference was found in chronological responses of p53, MAPK, and apoptosis between UVB-irradiated and UVC-irradiated cells. These results suggested that DNA damage-independent intracellular signaling molecules similarly responded to UVB and UVC when the equal level of DNA photoproducts were generated.

  • PDF