• 제목/요약/키워드: DNA interaction

검색결과 464건 처리시간 0.027초

Probiotics용 유산균의 Design과 Molecular Typing에 의한 동정법 (Design of Lactic Acid Bacteria Aiming at Probiotic Culture and Molecular Typing for Phyogenetic Identification)

  • 윤성식
    • Journal of Dairy Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.47-60
    • /
    • 2000
  • Over decades of work, the probiotic research has grown rapidly with a number of new cultures, which is claimed a variety of benefit. However, many of the specific effects attributed to the ingestion of probiotics remain convoluted and scientifically unsubstantiated. Accordingly, the scientific community faces a greater challenge and must objectively seek cause and effect relationships for many potential and currently investigated probiotic species. Rational selection and design of probiotics remains an important challenge and will require a solid information about the physiology and genetics of candidate strains relevant to their intestinal roles, functional activities, and interaction of with other resident micro flora. As far as beneficial culture of lactic acid bacteria (LAB) is concerned, simple, cost-effective, and exact identification of candidate strains is of foremost importance among others. Until recently, the relatedness of bacterial isolates has been determined sorely by testing for one or several phenotyphic markers, using methods such as serotyping, phage-typing, biotyping, and so forth. However, there are problems in the use of many of these phenotype-based methods. In contrast, some of newer molecular typing methods involving the analysis of DNA offer many advantages over traditional techniques. These DNA-based methods have the greater discriminatory power than that of phenotypic procedures. This review focuses on the importance and the basis of molecular typing methods along with some considerations on de-sign and selection of probiotic culture for human consumption.

  • PDF

RBF정제단백질의 핵산결합도 및 PKR효소의 인산화억제효과의 비교에 관한 연구 (Comparative Study of Nucletic Acid Binding of the Purified RBF Protein and Its Inhibition of PKR phosphorylation)

  • 박희성;김인수
    • 생명과학회지
    • /
    • 제8권2호
    • /
    • pp.119-125
    • /
    • 1998
  • dsRNA결합인자인 RBF단백질을 정제하여 이의 단일 또는 이중선의 RNA 또는 DNA 와의 결합도를 측정하였다ㅓ. RBF단백질은 이들과 각각 반응시켜 그 결합도는 SDS-PAGE에 의하여 비교관찰하였다. RBF단백질은 dsRNA와은 강한 결합력을 나타낸 반면 기타의 핵산구조에 대해서는 이러한 결과를 나타내지 못하였다. 인산화 실험의 결과, RBF단백질은 poly(I) : poly(C)의 존재하에서 사람 도는 쥐 모두로 부터의 PKR 효소의 자가인산화를 유사한 방식으로 억제하였다. 이는 다른 종류의 진핵세포생물에서 단백질합성조절을 위한 PKR과 RBF가 유사한 경쟁적 관련성을 유지하면서 존재함을 시사하고 있다.

  • PDF

원조포미바이러스 U5 LTR 말단의 보존적인 잔기의 돌연변이에 대한 인테그라제의 반응성 (Reactivity of Prototype Foamy Virus Integrase to the Mutants of the Highly Conserved Terminal Sequence of U5 LTR)

  • 현우석;이동현;고현탁;신차균
    • 약학회지
    • /
    • 제52권2호
    • /
    • pp.125-130
    • /
    • 2008
  • The long terminal repeat (LTR) of retroviral DNA genome plays an important role in the integration process by providing substrate recognition site for viral integrase (IN). The dinucleotide CA near the 3'-end of the LTR termini is completely conserved among retoviruses. In order to study specificity of interaction between prototype foamy virus (PFV) IN and its U5 LTR DNA, the effect of mutagenesis of the CA sequence was investigated by studying reactivity of PFV IN to the mutant LTR substrates. Replacement of only the C or the A allowed 60 to 100% of the reactivity of the wild type LTR substrate. In addition, replacement of the C and the A showed 50 to 80% of the reactivity of the wild type LTR substrate, indicating that PFV IN has less specificity on the conserved CA sequence when it is compared to the other retroviral INs. Therefore it is suggested that PFV IN is less dependent on the conserved sequence of LTR termini for its enzymatic reaction.

식물 유래 탄닌산의 접착능을 이용한 표면 개질 및 의료용 제형 기술 동향 (Surface Modification and Medical Formulation Technology Using Adhesion of Plant Tannic Acid)

  • 박은숙;신미경;이해신
    • 접착 및 계면
    • /
    • 제20권2호
    • /
    • pp.71-75
    • /
    • 2019
  • 탄닌산은 식물계에서 가장 많이 발견되는 폴리페놀 중 하나로, 초기 탄닌산 연구는 항산화제 등과 같은 생리학적 기능에 집중되어 있었다. 그러나 최근에는 탄닌산이 단백질, DNA 등 거의 모든 생체고분자와 분자간결합을 하는 것이 밝혀짐에 따라 분자적 접착제로서 많은 관심을 받고 있다. 탄닌산의 다양한 특성들은 표면의 기능, 젖음성을 조절할 뿐 아니라 에너지 저장 및 발생 장치에 기여하고, 의학적 제재로의 다양한 가능성을 보이고 있다. 본 논문에서는 분자적 접착제로서의 탄닌산과 생체고분자와의 결합, 탄닌산을 통한 표면 개질, 의료용 제재로의 활용 등에 대해 다루고자 한다.

EBP1 regulates Suv39H1 stability via the ubiquitin-proteasome system in neural development

  • Kim, Byeong-Seong;Ko, Hyo Rim;Hwang, Inwoo;Cho, Sung-Woo;Ahn, Jee-Yin
    • BMB Reports
    • /
    • 제54권8호
    • /
    • pp.413-418
    • /
    • 2021
  • ErbB3-binding protein 1 (EBP1) is a multifunctional protein associated with neural development. Loss of Ebp1 leads to upregulation of the gene silencing unit suppressor of variegation 3-9 homolog 1 (Suv39H1)/DNA (cytosine 5)-methyltransferase (DNMT1). EBP1 directly binds to the promoter region of DNMT1, repressing DNA methylation, and hence, promoting neural development. In the current study, we showed that EBP1 suppresses histone methyltransferase activity of Suv39H1 by promoting ubiquitin-proteasome system (UPS)-dependent degradation of Suv39H1. In addition, we showed that EBP1 directly interacts with Suv39H1, and this interaction is required for recruiting the E3 ligase MDM2 for Suv39H1 degradation. Thus, our findings suggest that EBP1 regulates UPS-dependent degradation of Suv39H1 to govern proper heterochromatin assembly during neural development.

표면 플라스몬 공명 센서의 제작 (Surface plasmon resonance sensor)

  • 한원식;정규진;이상원;홍석영;이영훈;홍태기
    • 분석과학
    • /
    • 제19권1호
    • /
    • pp.9-17
    • /
    • 2006
  • 생체 물질의 농도, 두께 및 특정 생체 물질의 분석을 위한 반응 속도론적 자료를 검출하는 능력 그리고 antigen/antibody, ligand/receptor, protein/protein 및 DNA/DNA 상호작용을 포함하는 다양한 생체물질간의 상호작용에 대한 분석에 적용되고, 자연 환경중 오염물질의 분석 등 다양하게 적용되는 표면 플라즈몬 공명 센서를 제작하였다. 또한 표면 플라즈몬 공명 센서를 제어하고 검출기로부터의 데이타(data)를 personal computer로 받아들이기 위해 data acquisition board를 이용하여 LabVIEW program을 만들었다.

Poly (ADP-ribose) in the pathogenesis of Parkinson's disease

  • Lee, Yunjong;Kang, Ho Chul;Lee, Byoung Dae;Lee, Yun-Il;Kim, Young Pil;Shin, Joo-Ho
    • BMB Reports
    • /
    • 제47권8호
    • /
    • pp.424-432
    • /
    • 2014
  • The defining feature of Parkinson's disease is a progressive and selective demise of dopaminergic neurons. A recent report on Parkinson's disease animal model demonstrates that poly (ADP-ribose) (PAR) dependent cell death, also named parthanatos, is accountable for selective dopaminergic neuronal loss. Parthanatos is a programmed necrotic cell death, characterized by PARP1 activation, apoptosis inducing factor (AIF) nuclear translocation, and large scale DNA fragmentation. Besides cell death regulation via interaction with AIF, PAR molecule mediates diverse cellular processes including genomic stability, cell division, transcription, epigenetic regulation, and stress granule formation. In this review, we will discuss the roles of PARP1 activation and PAR molecules in the pathological processes of Parkinson's disease. Potential interaction between PAR molecule and Parkinson's disease protein interactome are briefly introduced. Finally, we suggest promising points of therapeutic intervention in the pathological PAR signaling cascade to halt progression in Parkinson's disease.

The Alpha Subunit of Go Interacts with Brain Specific High Mobility Group Box Containing Protein

  • ;길성호
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.405-411
    • /
    • 2006
  • Heterotrimeric GTP binding proteins (G proteins) mediate signal transduction generated by neurotransmitter and hormones. Among G-proteins, Go is classified as a member of the Go/Gi family and the most abundant heterotrimeric G protein in brain. Most of the mechanistic analyses on the activation of Go indicated its action to be mediated by the $G{\beta}{\gamma}$ dimer because downstream effectors for its ${\alpha}$ subunit have not been clearly defined. To determine the downstream effectors of alpha subunits of Go ($Go{\alpha}$), we used yeast two-hybrid system to screen $Go{\alpha}$ interacting partners in cDNA library from the human brain. A brain specific high mobility group box containing protein (BHX), A possible transcription factor, was identified as a $Go{\alpha}$ interacting protein. We confirmed interaction between $Go{\alpha}$ and BHX employing in vitro affinity binding assay. Moreover, active form of $Go{\alpha}$ preferentially interacts with BHX than inactive farm. Our findings indicate that $Go{\alpha}$ could modulate gene expression via interaction with BHX during neuronal or brain development.

  • PDF

Identification of the Interaction between Rat Translationally Controlled Tumor Protein/IgE-dependent Histamine Releasing Factor and Myosin Light Chain

  • Kim, Min-Jeong;Jung, Jae-Hoon;Choi, Eung-Chil;Park, Hae-Young;Lee, Kyung-Lim
    • BMB Reports
    • /
    • 제34권6호
    • /
    • pp.526-530
    • /
    • 2001
  • The translationally controlled tumor protein (TCTP), also known as the IgE-dependent histamine releasing factor (HRF), was used in the yeast two-hybrid system to screen the interacting molecules. We obtained the N-terminus truncated rat fast myosin alkai light chain from the rat skeletal muscle cDNA library in the screening. Since either TCTP/HRF or the myosin light chain is known to be associated with histamine secretion from RBL-2H3 cells, we investigated the possible interaction between rat TCTP/HRF and nonmuscle myosin light chain in these cells. We used affinity chromatography and coimmunoprecipitation. Our data suggests that HRF and the myosin light chain interact, which may play an important role in histamine release in RBL-2H3 cells.

  • PDF

Identification of a Cellular Protein Interacting with RNA Polymerase of Hepatitis C Virus

  • Park, Kyu-Jin;Choi, Soo-Ho;Koh, Moon-Soo;Kim, Sung-Wan;Hwang, Soon-Bong
    • BMB Reports
    • /
    • 제33권1호
    • /
    • pp.59-62
    • /
    • 2000
  • Hepatitis C virus (HCV) nonstructural 5B (NS5B) protein is an RNA-dependent RNA polymerase (RdRp). To determine whether it can contribute to viral replication by interaction with cellular proteins, the yeast two-hybrid screening system was employed to screen a human liver cDNA library. Using the HCV NS5B as a bait, we have isolated positive clones encoding a cellular protein. The NS5B interacting protein, 5BIP, is a novel cellular protein of 170 amino acids. Interaction of the HCV NS5B protein with 5BIP was confirmed by a protein-protein blotting assay. Recently, we have demonstrated that NS5B possesses an RdRp activity and thus it is possible that 5BIP, in association with NS5B, plays a role in HCV replication.

  • PDF