• Title/Summary/Keyword: DNA fragmentation

Search Result 756, Processing Time 0.039 seconds

Anti-apoptotic Activity of Heme Oxygenase-1 Up-regulated by Etoposide in Human Retinal Pigment Epithelial Cells (Etoposide에 의한 인간 망막색소상피세포인 ARPE-19 세포의 아폽토시스 과정에서 Heme oxygenase-1의 항아폽토시스 기능에 대한 연구)

  • Lee, Sang-Kwon;Song, Ju-Dong;Kim, Kang-Mi;Kim, Jong-Min;Lee, Sang-Yull;Yoo, Young-Hyun;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1204-1210
    • /
    • 2007
  • The topoisomerase II inhibitor etoposide causes an accumulation of DNA double strand breaks within the nuclei of cells. In this study, we investigated the effect of etoposide on the cell growth and apoptosis of human RPE cells. Etoposide evoked a significant inhibition of cell growth, and also induced DNA fragmentation in ARPE-19 cells. In addition, etoposide significantly up-regulated the expression of heme oxygenase-1 (HO-1), which is a stress-responsive protein and is known to play a protective role against the oxidative injury. And, etoposide-induced HO-1 expression was affected by the ROS scavenger N-acetyl cysteine. We also used oligonucleotides interfering with HO-1 mRNA (siRNA) for the inhibition of HO-1 expression. Interestingly, knock-down of the HO-1 gene significantly increased the level of DNA fragmentation in etoposide-treated ARPE-19 cells. In conclusion, these results suggest that up-regulated HO-1 plays as an anti-apoptotic factor in the process of apoptosis of ARPE-19 cells stimulated by etoposide.

Effect of Paternal DNA Damage on Paternal DNA Degradation and Early Embryonic Development in Mouse Embryo: Supporting Evidence by GammaH2AX Expression (마우스 수정란에 있어서 부계 DNA 손상이 부계 DNA 퇴화 및 초기 배발달에 미치는 영향)

  • Kim, Chang Jin;Lee, Kyung-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.197-204
    • /
    • 2019
  • This study was investigated to test whether the zygote recognized the topoisomerase II beta (TOP2B) mediated DNA fragmentation in epididymal spermatozoa or the nuclease degradation in vas deferens spermatozoa by testing for the presence of gammaH2AX (γH2AX). The γH2AX is phosphorylation of histone protein H2AX on serine 139 occurs at sites flanking DNA double-stranded breaks (DSBs). The presence of γH2AX in the pronuclei of mouse zygotes which were injected with DNA broke epididymal spermatozoa was tested by immunohistochemistry at 5 and 9 h post fertilization, respectively. Paternal pronuclei that arose from epididymal spermatozoa treated with divalent cations did not stain for γH2AX at 5 h. On the other hand, in embryos injected with vas deferences spermatozoa that had been treated with divalent cations, γH2AX was only present in paternal pronuclei, and not the maternal pronuclei at 5 h. Interestingly, both pronuclei stained positively for γH2AX for all treatments and controls at 9 h after sperm injection. In conclusion, the embryos recognize DNA that is damaged by nuclease, but not by TOP2B because H2AX in phosphorylated in paternal pronuclei resulting from spermatozoa treated with fragmented DNA from vas deferens spermatozoa treated with divalent cations, but not from epididymal spermatozoa treated the same way.

Changes of DNA Fragmentation by Irradiation Doses and Storage in Gamma-Irradiated Fruits (감마선 조사 과일류에서 조사선량과 저장기간에 따른 DNA Fragmentation의 변화)

  • Kim, Sang-Mi;Park, Eun-Ju;Yang, Jae-Seung;Kang, Myung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.594-598
    • /
    • 2002
  • The changes in DNA damage were investigated during storage after irradiation. Kiwi, orange and pear were irradiated at 0.1, 0.3, 0.5, 0.7 and 1.0 kGy and stored for 3 months at 4$^{\circ}C$. The comet assay was applied to the sample seeds alt the beginning of irradiation and at the end of storage. Seeds were isolated and crushed, and the suspended cells were embedded in an agarose layer. After lysis of the cells, they were electrophoresed for 2 min and then stained. DNA fragmentation in seeds caused by irradiation was quantified as tail length and tail moment (tail length $\times$ % DNA in tail) by comet image analyzing system. Immediately after irradiation, the differences in tail length between unirradiated and irradiated fruit seeds were significant (p<0.05) in kiwi, orange and pear seeds. With in-creasing the irradiation doses, statistically significant longer extension of the DNA from the nucleus toward anode was observed. The results represented as tail moment showed similar tendency to those of tail length, but tile latter parameter was more sensitive than the former. Similarly even 3 months after irradiation, all the irradiated fruit seeds significantly showed longer tail length than the unirradiated controls. These results indicate that the comet assay could be one of the simple methods of detecting irradiated fruit seeds. Moreover, the method could detect DNA damage even after 3 months after irradiation.

Generation of Reactive Oxygen Species and Subsequent DNA Fragmentation in Bovine Cultured Somatic Cells

  • Hwang, In-Sun;Kim, Ho-Jeong;Park, Chun-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.485-489
    • /
    • 2011
  • The present study was conducted to examine the reactive oxygen species (ROS) generation levels and subsequent DNA damage in the bovine cultured somatic cells. Bovine ear skin cells were classified by serum starvation, confluence and cycling cells. Cells were stained in 10 ${\mu}M$ dichlorohydrofluorescein diacetate ($H_2DCFDA$) or 10 ${\mu}M$ hydroxyphenyl fluorescein (HPF) dye to measure the $H_2O_2$ or $^{\cdot}OH$ radical levels. The samples were examined with a fluorescent microscope, and fluorescence intensity was analyzed in each cell. $H_2O_2$ and $^{\cdot}OH$ radical levels of cultured somatic cells were high in confluence group ($7.1{\pm}0.7$ and $8.4{\pm}0.4$ pixels/cell, respectively) and significantly low in serum starvation group ($4.9{\pm}0.4$ and $7.0{\pm}0.4$ pixels/cell, respectively, p<0.05). Comet tail lengths of serum starvation ($148.3{\pm}5.7$ ${\mu}M$) and confluence ($151.1{\pm}5.0$ ${\mu}M$) groups were found to be significantly (p<0.05) increased in comparison to that of cycling group ($137.1{\pm}7.5$ ${\mu}M$). These results suggest that the culture type of donor cells can affect the ROS generation, which leads the DNA fragmentation of the cells.

Inhibition Effect on Neuro2A Cell by Apoptosis of Zizania latifolia Rhizoma (줄풀 줄기의 Neuro2A 신경세포고사에 대한 억제 효과)

  • Cha Yun-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.149-155
    • /
    • 2006
  • To prevent human body injury from oxidative stress, antioxidants are very important and many research about antioxidants are generally being conducted. Hydrogen peroxide($H_2O_2$) that is one of vitality oxygen species has been seen that cause various diseases, DNA damage and gene change. The purpose of this study was to examine the inhibition effect of Zizania latifolia Rhizoma on apoptosis induced by $H_2O_2$ in Neuro2A cell. Neuro2A cells were cultivated in RPMI(GibcoBRL) with 5% FBS and treated with $H_2O_2$ and Zizania latifolia Rhizoma. We measured the cell viability and analyzed DNA fragmentation. Activity of PARP, Cytochrome C, caspase-9, caspase-3, p53, p21, Bax and Bcl-2 in the cell was examined dy using western blot. The results obtained were as Follows: The cell viability in Zizania latifolia Rhizoma treatment (60ug/ml<) decreased significantly compared with that of none treatment. (P<0.001) Zizania latifolia Rhizoma increased cell viability about twice as much as that being injury by $H_2O_2$. (Zizania Latifolia Rhizoma 20ug/ml, $H_2O_2$ 200uM, P<0.001) DNA fragmentation developed by $H_2O_2$, but was not developed in Zizania latifolia Rhizoma treatment. PARP, Cytochrome C, caspase-9 and caspase-3 activated all by $H_2O_2$ but were not activated in Zizania latifolia Rhizoma treatment. P53, P2l and Bax activated dy $H_2O_2$, and Bcl-2 got into inactivation. But the opposite results appeared in Zizania latifolia Rhizoma treatment. In conclusion, these results suggest that Zizania latifolia Rhizoma inhibit the development of DNA fragmentation and apoptosis by $H_2O_2$ and the antioxidant action of Zizania latifolia Rhizoma is effective. More researches about effect of Zizania latifolia Rhizoma are considered to need.

형질전환된 Nicotiana tabacum 배양에 있어서 glutathione과 ascorbic acid가 세포생장과 생존율에 미치는 영향

  • Kim, Yong-Hun;Lee, Sang-Yun;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.293-297
    • /
    • 2003
  • Glutathione and ascorbic acid have been shown to fulfill many essential functions in animal and plant growth, development, defence and protection against oxidative damage. Effects of glutathione and ascorbic acid were examined in transgenic N. tabacum cells producing hGM-CSF to determine the effects of the vitamins on growth and cell viability. In lag phase, cell viability was preserved by glutathione and ascorbic acid. Therefore, recombinant protein productivity was increased. The purpose of present study is to investigate the role of antioxidants in cold stress-induced apoptosis in plant suspension cells. Cold stress lowered cell viability and increased total genomic DNA fragmentation. Supplementing the cell cultures with glutathione and ascorbic acid inhibited cold stress-induced decrease in cell viability and increase in total genomic DNA fragmentation.

  • PDF

Caffeic Acid Phenethyl Ester Inhibits Cell Proliferation and Induces Apoptosis in Human Ovarian Cancer Cells

  • Park, Hyung-Joo;Yang, Seung-Joo;Mo, Jin-Young;Ryu, Geun-Chang;Lee, Kyung-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.4
    • /
    • pp.196-201
    • /
    • 2010
  • The phenethyl ester of caffeic acid (CAPE), an active component of honeybee propolis extract, is shown to inhibit cancer growth previously. However, studies on human ovarian cancer are largely obscure. This study evaluated the effects of CAPE as a potential anti-proliferative and pro-apoptotic agent in the human ovarian cancer line, OVCAR-3. CAPE treated OVCAR-3 cells showed inhibition of cell viability and proliferation in a dose-dependent manner by WST-1 assay, LDH assay and bromodeoxyuridine (BrdU) incorporation assay. Furthermore, CAPE-mediated OVCAR-3 cell growth inhibition was associated with apoptotic changes as evident by cell cycle arrest and accumulation of cells in the apoptotic phase and DNA fragmentation. Taken together, CAPE inhibits cell proliferation via DNA synthesis reduction and induces apoptotic cell death via DNA damage, thus elucidating a novel, plausible mechanism of CAPE anti-tumorigenic property in OVCAR-3 cells.

Ectopic Expression of Mitochondria Endonuclease Pnu1p from Schizosaccharomyces pombe Induces Cell Death of the Yeast

  • Oda, Kaoru;Kawasaki, Nami;Fukuyama, Masashi;Ikeda, Shogo
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1095-1099
    • /
    • 2007
  • Endonuclease G (EndoG) is a mitochondrial non-specific nuclease that is highly conserved among the eukaryotes. Although the precise role of EndoG in mitochondria is not yet known, the enzyme is released from the mitochondria and digests nuclear DNA during apoptosis in mammalian cells. Schizosaccharomyces pombe has an EndoG homolog Pnu1p (previously named SpNuc1) that is produced as a precursor protein with a mitochondrial targeting sequence. During the sorting into mitochondria the signal sequence is cleaved to yield the functionally active endonuclease. From the analogy to EndoG, active extramitochondrial Pnu1p may trigger cell killing by degrading nuclear DNA. Here, we tested this possibility by expressing a truncated Pnu1p lacking the signal sequence in the extramitochondrial region of pnu1-deleted cells. The truncated Pnu1p was localized in the cytosol and nuclei of yeast cells. And ectopic expression of active Pnu1p led to cell death with fragmentation of nuclear DNA. This suggests that the Pnu1p is possibly involved in a certain type of yeast cell death via DNA fragmentation. Although expression of human Bak in S. pombe was lethal, Pnu1p nuclease is not necessary for hBak-induced cell death.

Coenzyme Q10, oxidative stress markers, and sperm DNA damage in men with idiopathic oligoasthenoteratospermia

  • Alahmar, Ahmed T;Sengupta, Pallav;Dutta, Sulagna;Calogero, Aldo E.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.150-155
    • /
    • 2021
  • Objective: Oxidative stress (OS) plays a key role in the etiology of unexplained male infertility. Coenzyme Q10 (CoQ10) is a potent antioxidant that may improve semen quality and OS in infertile men with idiopathic oligoasthenoteratospermia (OAT), but the underlying mechanism is unknown. Therefore, the present study was undertaken to investigate the effect of CoQ10 on OS markers and sperm DNA damage in infertile patients with idiopathic OAT. Methods: This prospective controlled study included 50 patients with idiopathic OAT and 50 fertile men who served as controls. All patients underwent a comprehensive medical assessment. Patients and controls received 200 mg of oral CoQ10 once daily for 3 months. Semen and blood were collected and analyzed for sperm parameters, seminal CoQ10 levels, reactive oxygen species (ROS) levels, total antioxidant capacity, catalase, sperm DNA fragmentation (SDF), and serum hormonal profile. Results: The administration of CoQ10 to patients with idiopathic OAT significantly improved sperm quality and seminal antioxidant status and significantly reduced total ROS and SDF levels compared to pretreatment values. Conclusion: CoQ10, at a dose of 200 mg/day for 3 months, may be a potential therapy for infertile patients with idiopathic OAT, as it improved sperm parameters and reduced OS and SDF in these patients.

Effects of Artemisia Capillaris Thunberg on Apoptosis in HeLa Cells (사철쑥의 HeLa 세포고사 효과)

  • Lee, Hyoung-Ja;Kim, Kee-Hwan;Park, Jong-Kun;Hwang, Eun-Hee
    • Journal of Nutrition and Health
    • /
    • v.41 no.1
    • /
    • pp.22-30
    • /
    • 2008
  • This study analyzes the apoptosis of HeLa cells to see if we can use the Artemisia capillaris Thunberg for the prevention of chronic degenerative diseases. We used the HeLa cells to see what effects the A. capillaris Thunberg had on apoptosis of the cancer cells. We checked the cell activity, cell morphological change, DNA fragmentation, and DNA content after administering 0, 100, 500, 1000, and $2000{\mu}g/ml$ methanol, ethyl acetate, n-butanol extract of the A. capillaris Thunberg. As for the cell viability, the increase of concentration of methanol and ethyl acetate decreased the survival rate of the cell, but the phenomenon was much weakened in n-butanol extract and was not observed in aqueous extract. The higher the density of the methanol, ethyl acetate, n-butanol and aqueous extract was, the lower the survival rate of the HeLa cell was. These extracts obstructed the cell cohesion and caused the blebbing of he cell membrane and fragmentation of the nucleus, both of which are symptoms of apoptosis. Laddering-pattern DNA fragmentation was observed in the groups that were treated with the $1000{\mu}g/ml$ and $2000{\mu}g/ml$ of methanol extract. The DNA content of the cells apoptosis measured by fluorescent-activated cell sorter (FACS) increased as the density of the methanol, ethyl acetate and butanol extract increased. The result of the study shows that A. capillaris Thunberg fosters the apoptosis of HeLa cells, which suggests that the A. capillaris Thunberg has a great potential value as food additives, medicinal supplements for patients with chronic diseases, and preventive measures against cancer.