• Title/Summary/Keyword: DNA evolution

Search Result 337, Processing Time 0.037 seconds

Detection of Clavibacter michiganensis subsp. michiganensis Assisted by Micro-Raman Spectroscopy under Laboratory Conditions

  • Perez, Moises Roberto Vallejo;Contreras, Hugo Ricardo Navarro;Herrera, Jesus A. Sosa;Avila, Jose Pablo Lara;Tobias, Hugo Magdaleno Ramirez;Martinez, Fernando Diaz-Barriga;Ramirez, Rogelio Flores;Vazquez, Angel Gabriel Rodriguez
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.381-392
    • /
    • 2018
  • Clavibacter michiganensis subsp. michiganesis (Cmm) is a quarantine-worthy pest in $M{\acute{e}}xico$. The implementation and validation of new technologies is necessary to reduce the time for bacterial detection in laboratory conditions and Raman spectroscopy is an ambitious technology that has all of the features needed to characterize and identify bacteria. Under controlled conditions a contagion process was induced with Cmm, the disease epidemiology was monitored. Micro-Raman spectroscopy ($532nm\;{\lambda}$ laser) technique was evaluated its performance at assisting on Cmm detection through its characteristic Raman spectrum fingerprint. Our experiment was conducted with tomato plants in a completely randomized block experimental design (13 plants ${\times}$ 4 rows). The Cmm infection was confirmed by 16S rDNA and plants showed symptoms from 48 to 72 h after inoculation, the evolution of the incidence and severity on plant population varied over time and it kept an aggregated spatial pattern. The contagion process reached 79% just 24 days after the epidemic was induced. Micro-Raman spectroscopy proved its speed, efficiency and usefulness as a non-destructive method for the preliminary detection of Cmm. Carotenoid specific bands with wavelengths at 1146 and $1510cm^{-1}$ were the distinguishable markers. Chemometric analyses showed the best performance by the implementation of PCA-LDA supervised classification algorithms applied over Raman spectrum data with 100% of performance in metrics of classifiers (sensitivity, specificity, accuracy, negative and positive predictive value) that allowed us to differentiate Cmm from other endophytic bacteria (Bacillus and Pantoea). The unsupervised KMeans algorithm showed good performance (100, 96, 98, 91 y 100%, respectively).

Diode laser surgery in the treatment of oral proliferative verrucous leukoplakia associated with HPV-16 infection

  • Bombeccari, Gian Paolo;Garagiola, Umberto;Candotto, Valentina;Pallotti, Francesco;Carinci, Francesco;Gianni, Aldo Bruno;Spadari, Francesco
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.16.1-16.5
    • /
    • 2018
  • Background: Proliferative verrucous leukoplakia (PVL) is an oral potentially malignant disorder, characterized by multifocal expression, progressive clinical evolution, and a high rate of malignant transformation. Evidence-based information regarding optimal PVL management is lacking, due to the paucity of data. The present report describes a case of PVL associated with HPV-16 infection and epithelial dysplasia treated by diode laser surgery, and the outcome of disease clinical remission over a 2-year follow-up period. Case report: A 61-year-old Caucasian male with oral verrucous hyperkeratosis presented for diagnosis. The lesions were localized on the maxillary gingiva and palatal alveolar ridge. Multiple biopsy specimens have been taken by mapping the keratotic lesion area. Microscopic examination was compatible with a diagnosis of PVL with focal mild dysplasia, localized in the right maxillary gingiva. Polymerase chain reaction (PCR) was done for human papillomavirus (HPV) detection which revealed presence of HPV DNA, and the genotype revealed HPV 16 in the sample. The PVL in the right gingival area was treated on an outpatient basis by excision with a diode laser. This approach resulted in good clinical response and decreased morbidity over a 2-year follow-up period. Conclusions: This case illustrates the benefit of a conservative approach by diode laser treatment than wide surgical excision for management of the PVL lesions associated with mild dysplasia and HPV-16 infection.

Sequence Diversity of Mitochondrial Cytochrome b Gene in Grey Goral Naemorhedus caudatus(Artiodactyla, Bovidae) from Korea (한국의 산양(우제목, 소과)의 미토콘드리아 Cytochrome b 염기서열 다양성)

  • Koh, Hung-Sun;Yang, Byong-Guk;Lee, Bae-Kun;Lee, Jong-Hyong
    • Animal Systematics, Evolution and Diversity
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • To add genetic information to the conservation efforts on grey coral (Naemorhedus caudatus) in Korea, we investigated the pattern of mitochondrial cytochrome b gene sequence (606 bp) of six specimens from two localities in Korea. The corresponding sequences of N. caudatus in China obtained from GenBank were also used. The nucleotide Tamura-Nei distances between each of four haplotypes of N. caudatus in Korea and the haplotype of N. caudatus in China varied from 0.0650 to 0.0803: N. caudatus revealed high level of sequence diversity in Bovidae. In N. caudatus in Korea, the distances among three haplotypes at Yanggu were 0.0151 to 0.0185, and it suggests that the genetic diversity of Yanggu population was decreased in low level. Moreover, the distances between each of three haplotypes at Yanggu and one haplotype at Samcheok were 0.0343 to 0.0489. It indicates that habitat isolation caused the continuous increase of genetic distance with geographic distance in N. caudatus, and various conservation plans for mitigating the loss of genetic diversity in Korea have to be in immediate action. To clarify the taxonomic status of N. caudatus, the sequence (276 bp) of N. goral available from GenBank were also utilized, and n goral was not distinct from N. caudatus. It suggests that they may be conspecific, but further analyses with additional specimens of two species are necessary.

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

  • Nguyen, Van Binh;Giang, Vo Ngoc Linh;Waminal, Nomar Espinosa;Park, Hyun-Seung;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.135-144
    • /
    • 2020
  • Background: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P. quinquefolius and P. trifolius) from North America and five (P. ginseng, P. notoginseng, P. japonicus, P. vietnamensis, and P. stipuleanatus) from Asia. Methods: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

Bioinformatics Analysis of Gene Expression Regulation by Transposable Elements in Dementia Patients (치매환자에서 transposable elements에 의한 유전자 발현조절의 생물정보 분석)

  • Kim, Dae-Soo;Huh, Jae-Won;Ha, Hong-Seok;Kim, Tae-Hong;Jo, Un-Jong;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1188-1194
    • /
    • 2006
  • Dementia is a progressive disease of increasing the dysfunction of intellectual and physical ability. In the aging society, many families are suffering from the caring the patients who are diagnosed with dementia. However, dementia is a complex disease affected by the genetic and environmental agents. In the present study, we investigated the transposable elements in relation to dementia. From the analysis of dementia EST (expressed sequence tag) sequences, we found dementia candidate genes, and analyzed expression profiles and repeat elements using bioinformatics tools. This analysis showed that 98 genes were affected in their mRNA sequences by transposable elements expression. Their expressions were affected by the integration of different transposable elements (SINE, LINE, LTR, DNA) during the primate evolution. We believe that our work will be of significant interest to genome scientists, and may help them gain insight into implication of transposable elements expression in dementia.

Application of Plant Flavonoids as Natural Antioxidants in Poultry Production (가금 생산에서 천연 항산화제로서 식물성 Flavonoids의적용)

  • Kang-Min, Seomoon;In-Surk, Jang
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.211-220
    • /
    • 2022
  • Poultry are exposed to extremely high levels of oxidative stress as a consequence of the excessive production of reactive oxygen species (ROS) induced by endogenous and exogenous stressors, such as high-stocking densities, thermal stress, environmental and feed contamination, along with factors associated with intensive breeding systems. Oxidative stress promotes lipid peroxidation, DNA damage, and inflammation, which can have detrimental effects on the health of birds. During the course of evolution, birds have developed antioxidant defense mechanisms that contribute to maintaining homeostasis when exposed to endogenous and exogenous stressors. The primary antioxidant defense systems are enzymatic and non-enzymatic in nature and play roles in protecting cells from ROS attack. Recently, plant flavonoids, which have been established to reduce oxidative stress, have been attracting considerable attention as potential feed additives. Flavonoids are a group of polyphenolic compounds that can be stabilized by binding structural compounds with ROS, and can promote the elimination of ROS by inducing the expression of antioxidant enzymes. However, although flavonoids can contribute to reducing lipid peroxidation and thereby enhance the antioxidant capacity of birds, they have low solubility in the gastrointestinal tract, and consequently, it is necessary to develop a delivery technology that can facilitate the effect intestinal absorption of these compounds. Furthermore, it is important to determine the dietary levels of flavonoids by assessing the exact antioxidant effects in the gastrointestinal tract wherein the concentrations of dietary flavonoids are highest. It is also necessary to examine the expression of transcriptional factors and vitagenes associated with the efficient antioxidant effects induced by flavonoids. It is anticipated that the application of flavonoids as natural antioxidants will become a particularly important field in the poultry industry.

Review of the Korean Indigenous Species Investigation Project (2006-2020) by the National Institute of Biological Resources under the Ministry of Environment, Republic of Korea (한반도 자생생물 조사·발굴 연구사업 고찰(2006~2020))

  • Bae, Yeon Jae;Cho, Kijong;Min, Gi-Sik;Kim, Byung-Jik;Hyun, Jin-Oh;Lee, Jin Hwan;Lee, Hyang Burm;Yoon, Jung-Hoon;Hwang, Jeong Mi;Yum, Jin Hwa
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.119-135
    • /
    • 2021
  • Korea has stepped up efforts to investigate and catalog its flora and fauna to conserve the biodiversity of the Korean Peninsula and secure biological resources since the ratification of the Convention on Biological Diversity (CBD) in 1992 and the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits (ABS) in 2010. Thus, after its establishment in 2007, the National Institute of Biological Resources (NIBR) of the Ministry of Environment of Korea initiated a project called the Korean Indigenous Species Investigation Project to investigate indigenous species on the Korean Peninsula. For 15 years since its beginning in 2006, this project has been carried out in five phases, Phase 1 from 2006-2008, Phase 2 from 2009-2011, Phase 3 from 2012-2014, Phase 4 from 2015-2017, and Phase 5 from 2018-2020. Before this project, in 2006, the number of indigenous species surveyed was 29,916. The figure was cumulatively aggregated at the end of each phase as 33,253 species for Phase 1 (2008), 38,011 species for Phase 2 (2011), 42,756 species for Phase 3 (2014), 49,027 species for Phase 4 (2017), and 54,428 species for Phase 5(2020). The number of indigenous species surveyed grew rapidly, showing an approximately 1.8-fold increase as the project progressed. These statistics showed an annual average of 2,320 newly recorded species during the project period. Among the recorded species, a total of 5,242 new species were reported in scientific publications, a great scientific achievement. During this project period, newly recorded species on the Korean Peninsula were identified using the recent taxonomic classifications as follows: 4,440 insect species (including 988 new species), 4,333 invertebrate species except for insects (including 1,492 new species), 98 vertebrate species (fish) (including nine new species), 309 plant species (including 176 vascular plant species, 133 bryophyte species, and 39 new species), 1,916 algae species (including 178 new species), 1,716 fungi and lichen species(including 309 new species), and 4,812 prokaryotic species (including 2,226 new species). The number of collected biological specimens in each phase was aggregated as follows: 247,226 for Phase 1 (2008), 207,827 for Phase 2 (2011), 287,133 for Phase 3 (2014), 244,920 for Phase 4(2017), and 144,333 for Phase 5(2020). A total of 1,131,439 specimens were obtained with an annual average of 75,429. More specifically, 281,054 insect specimens, 194,667 invertebrate specimens (except for insects), 40,100 fish specimens, 378,251 plant specimens, 140,490 algae specimens, 61,695 fungi specimens, and 35,182 prokaryotic specimens were collected. The cumulative number of researchers, which were nearly all professional taxonomists and graduate students majoring in taxonomy across the country, involved in this project was around 5,000, with an annual average of 395. The number of researchers/assistant researchers or mainly graduate students participating in Phase 1 was 597/268; 522/191 in Phase 2; 939/292 in Phase 3; 575/852 in Phase 4; and 601/1,097 in Phase 5. During this project period, 3,488 papers were published in major scientific journals. Of these, 2,320 papers were published in domestic journals and 1,168 papers were published in Science Citation Index(SCI) journals. During the project period, a total of 83.3 billion won (annual average of 5.5 billion won) or approximately US $75 million (annual average of US $5 million) was invested in investigating indigenous species and collecting specimens. This project was a large-scale research study led by the Korean government. It is considered to be a successful example of Korea's compressed development as it attracted almost all of the taxonomists in Korea and made remarkable achievements with a massive budget in a short time. The results from this project led to the National List of Species of Korea, where all species were organized by taxonomic classification. Information regarding the National List of Species of Korea is available to experts, students, and the general public (https://species.nibr.go.kr/index.do). The information, including descriptions, DNA sequences, habitats, distributions, ecological aspects, images, and multimedia, has been digitized, making contributions to scientific advancement in research fields such as phylogenetics and evolution. The species information also serves as a basis for projects aimed at species distribution and biological monitoring such as climate-sensitive biological indicator species. Moreover, the species information helps bio-industries search for useful biological resources. The most meaningful achievement of this project can be in providing support for nurturing young taxonomists like graduate students. This project has continued for the past 15 years and is still ongoing. Efforts to address issues, including species misidentification and invalid synonyms, still have to be made to enhance taxonomic research. Research needs to be conducted to investigate another 50,000 species out of the estimated 100,000 indigenous species on the Korean Peninsula.