• 제목/요약/키워드: DNA delivery

검색결과 194건 처리시간 0.028초

Possible role of Pax-6 in promoting breast cancer cell proliferation and tumorigenesis

  • Zong, Xiangyun;Yang, Hongjian;Yu, Yang;Zou, Dehong;Ling, Zhiqiang;He, Xiangming;Meng, Xuli
    • BMB Reports
    • /
    • 제44권9호
    • /
    • pp.595-600
    • /
    • 2011
  • Pax 6, a member of the paired box (Pax) family, has been implicated in oncogenesis. However, its therapeutic potential has been never examined in breast cancer. To explore the role of Pax6 in breast cancer development, a lentivirus based short hairpin RNA (shRNA) delivery system was used to knockdown Pax6 expression in estrogen receptor (ER)-positive (MCF-7) and ER-negative (MDA-MB-231) breast cancer cells. Effect of Pax6 silencing on breast cancer cell proliferation and tumorigenesis was analyzed. Pax6-RNAi-lentivirus infection remarkably downregulated the expression levels of Pax6 mRNA and protein in MCF-7 and MDA-MB-231 cells. Accordingly, the cell viability, DNA synthesis, and colony formation were strongly suppressed, and the tumorigenesis in xenograft nude mice was significantly inhibited. Moreover, tumor cells were arrested at G0/G1 phase after Pax6 was knocked down. Pax6 facilitates important regulatory roles in breast cancer cell proliferation and tumor progression, and could serve as a diagnostic marker for clinical investigation.

Targeting the Osmotic Stress Response for Strain Improvement of an Industrial Producer of Secondary Metabolites

  • Godinez, Octavio;Dyson, Paul;del Sol, Ricardo;Barrios-Gonzalez, Javier;Millan-Pacheco, Cesar;Mejia, Armando
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권11호
    • /
    • pp.1787-1795
    • /
    • 2015
  • The transition from primary to secondary metabolism in antibiotic-producing Streptomyces correlates with expression of genes involved in stress responses. Consequently, regulatory pathways that regulate specific stress responses are potential targets to manipulate to increase antibiotic titers. In this study, genes encoding key proteins involved in regulation of the osmotic stress response in Streptomyces avermitilis, the industrial producer of avermectins, are investigated as targets. Disruption of either osaBSa, encoding a response regulator protein, or osaCSa, encoding a multidomain regulator of the alternative sigma factor SigB, led to increased production of both oligomycin, by up to 200%, and avermectin, by up to 37%. The mutations also conditionally affected morphological development; under osmotic stress, the mutants were unable to erect an aerial mycelium. In addition, we demonstrate the delivery of DNA into a streptomycete using biolistics. The data reveal that information on stress regulatory responses can be integrated in rational strain improvement to improve yields of bioactive secondary metabolites.

화학기상 응축법에 의한 나노분말의 제조 및 응용 (Production and Application of Nanoparticles by the Chemical Vapor Condensation Process)

  • 김진천;하국현;최철진;김병기
    • 한국분말재료학회지
    • /
    • 제12권4호
    • /
    • pp.239-248
    • /
    • 2005
  • 1990년도 초반에 개발되어 나노분말의 제조 공정으로 집중적으로 연구되어온 화학기상응축공정은 고강도용 나노분말 소재이외에 기능성 자성재료로의 응용에 주로 이용되어 왔다. 최근에는 이러한 응용이외에 나노분말의 표면을 다양한 이종 소재로 응용하고자하는 나노캡슐(혹은 core/shell)화 제조 공정으로 진보되어 다양한 합금 시스템으로 발전하게 되었다. 특히 최근 Particles 2005, Surface Modification in Particle Technology 학회에서는 나노금속 혹은 세라믹 분말에 PMMA, PE등 polymer의 유기화합물의 코팅하여, DNA나 RNA를 부착하거나 추출해내는 나노캡슐화 공정 연구가 매우 활발하게 진행됨을 보여주고 있으며, 이들 나노 캡슐의 개발은 약물전달계(Drug delivery system), 온열치료용 및 MRI 조영제 등의 바이오재료로의 응용가능성이 크게 기대되어 이에 대한 연구들이 활발하게 진행될 것으로 예상된다.

Amino-terminal arginylation as a degradation signal for selective autophagy

  • Cha-Molstad, Hyunjoo;Kwon, Yong Tae;Kim, Bo Yeon
    • BMB Reports
    • /
    • 제48권9호
    • /
    • pp.487-488
    • /
    • 2015
  • The ubiquitin-proteasome system and the autophagy lysosome system are the two major protein degradation machineries in eukaryotic cells. These two systems coordinate the removal of unwanted intracellular materials, but the mechanism by which they achieve this synchronization is largely unknown. The ubiquitination of substrates serves as a universal degradation signal for both systems. Our study revealed that the amino-terminal Arg, a canonical N-degron in the ubiquitin-proteasome system, also acts as a degradation signal in autophagy. We showed that many ER residents, such as BiP, contain evolutionally conserved arginylation permissive pro-N-degrons, and that certain inducers like dsDNA or proteasome inhibitors cause their translocation into the cytoplasm where they bind misfolded proteins and undergo amino-terminal arginylation by arginyl transferase 1 (ATE1). The amino-terminal Arg of BiP binds p62, which triggers p62 oligomerization and enhances p62-LC3 interaction, thereby stimulating autophagic delivery and degradation of misfolded proteins, promoting cell survival. This study reveals a novel ubiquitin-independent mechanism for the selective autophagy pathway, and provides an insight into how these two major protein degradation pathways communicate in cells to dispose the unwanted proteins. [BMB Reports 2015; 48(9): 487-488]

Recent Advances in Toxoplasma gondii Immunotherapeutics

  • Lim, Sherene Swee-Yin;Othman, Rofina Yasmin
    • Parasites, Hosts and Diseases
    • /
    • 제52권6호
    • /
    • pp.581-593
    • /
    • 2014
  • Toxoplasmosis is an opportunistic infection caused by the protozoan parasite Toxoplasma gondii. T. gondii is widespread globally and causes severe diseases in individuals with impaired immune defences as well as congenitally infected infants. The high prevalence rate in some parts of the world such as South America and Africa, coupled with the current drug treatments that trigger hypersensitivity reactions, makes the development of immunotherapeutics intervention a highly important research priority. Immunotherapeutics strategies could either be a vaccine which would confer a pre-emptive immunity to infection, or passive immunization in cases of disease recrudescence or recurrent clinical diseases. As the severity of clinical manifestations is often greater in developing nations, the development of well-tolerated and safe immunotherapeutics becomes not only a scientific pursuit, but a humanitarian enterprise. In the last few years, much progress has been made in vaccine research with new antigens, novel adjuvants, and innovative vaccine delivery such as nanoparticles and antigen encapsulations. A literature search over the past 5 years showed that most experimental studies were focused on DNA vaccination at 52%, followed by protein vaccination which formed 36% of the studies, live attenuated vaccinations at 9%, and heterologous vaccination at 3%; while there were few on passive immunization. Recent progress in studies on vaccination, passive immunization, as well as insights gained from these immunotherapeutics is highlighted in this review.

Methods for Introduction of the Atmospheric Nitrogen Fixing Ability to Plants

  • PreiningerE;BokaK;ZatykoJ;KoranyiP;GyurjanI
    • Journal of Plant Biotechnology
    • /
    • 제1권1호
    • /
    • pp.31-38
    • /
    • 1999
  • An artificial symbiosis was established between diazotropic Azomonas insignis and strawberry (Fragaria x ananassa). The partnership was created by in vitro techniques through callus induction and organogenesis. The basis of this partnerships is the bacterial dependence on the plants metabolic activity, using maltose in the medium as a carbon and energy source which can be utilized by the plant cells only. The presence of bacteria in the intercellular spaces of the callus tissues and regenerated plants was proven by microscopic techniques. Nitrogenase activity could also be detected in the plant tissues. For successful and high frequency introduction of bacteria to the plant tissues, biolistic gun method was used. On the basis of the DNA transfer method, Azotobacter vinelandii bacteria were delivered directly into strawberry tissues by the particle bombardment. This was the first use of living bacteria as microprojectils for bombardment of plant tissues. The treatment was successful, the presence of bacteria in the developing callus tissue and regenerated plants were detected by light and electron microscopy.

  • PDF

Exploiting Gastrointestinal Microbes for Livestock and Industrial Development - Review -

  • Singh, Birbal;Bhat, Tej K.;Singh, Bhupinder
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권4호
    • /
    • pp.567-586
    • /
    • 2001
  • Gastrointestinal tract of ruminants as well as monogastric animals are colonised by a variety of microorganisms including bacteria, fungi and protozoa. Gastrointestinal ecosystem, especially the rumen is emerging as an important source for enrichment and natural selection of microbes adapted to specific conditions. It represents a virtually untapped source of novel products (e.g. enzymes, antibiotics, bacteriocins, detoxificants and aromatic compounds) for industrial and therapeutic applications. Several gastrointestinal bacteria and fungi implicated in detoxification of anti-nutritional factors (ANFs) can be modified and manipulated into promising system for detoxifying feed stuffs and enhancing fibre fermentation both naturally by adaptation or through genetic engineering techniques. Intestinal lactobacilli, bifidobacteria and butyrivibrios are being thoroughly investigated and widely recommended as probiotics. Restriction endonucleases and native plasmids, as stable vectors and efficient DNA delivery systems of ruminal and intestinal bacteria, are increasingly recognised as promising tools for genetic manipulation and development of industrially useful recombinant microbes. Enzymes can improve the nutrient availability from feed stuffs, lower feed costs and reduce release of wastes into the environment. Characterization of genes encoding a variety of commercially important enzymes such as cellulases, xylanases, $\beta$-glucanases, pectinases, amylases and phytases will foster the development of more efficacious and viable enzyme supplements and enzyme expression systems for enhancing livestock production.

Characterization of Prototype Foamy Virus Infectivity in Transportin 3 Knockdown Human 293t Cell Line

  • Hamid, Faysal Bin;Kim, Jinsun;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.380-387
    • /
    • 2017
  • The foamy viruses are currently considered essential for development as vectors for gene delivery. Previous studies demonstrated that prototype foamy virus (PFV) can infect and replicate prevalently in a variety of cell types for its exclusive replication strategy. However, the virus-host interaction, especially PFV-transportin3 (TNPO3), is still poorly understood. In our investigation of the role of TNPO3 in PFV infection, we found lower virus production in TNPO3 knockdown (KD) cells compared with wild-type 293T cells. PCR analysis revealed that viral DNAs were mostly altered to circular forms: both 1-long terminal repeat (1-LTR) and 2-LTR in TNPO3 KD cells. We therefore suggest that TNPO3 is required for successful PFV replication, at least at/after the nuclear entry step of viral DNA. These findings highlight the obscure mysteries of PFV-host interaction and the requirement of TNPO3 for productive infection of PFV in 293T cells.

Functional Characteristics of C-terminal Lysine to Cysteine Mutant Form of CTLA-4Ig

  • Kim, Bongi;Shin, Jun-Seop;Park, Chung-Gyu
    • IMMUNE NETWORK
    • /
    • 제13권1호
    • /
    • pp.16-24
    • /
    • 2013
  • CTLA-4Ig is regarded as an inhibitory agent of the T cell proliferation via blocking the costimulatory signal which is essential for full T cell activation. To improve applicability, we developed the CTLA-4Ig-CTKC in which the c-terminal lysine had been replaced by cysteine through single amino acid change. The single amino acid mutation of c-terminus of CTLA-4Ig was performed by PCR and was checked by in vitro transcription and translation. DNA construct of mutant form was transfected to Chinese hamster ovary (CHO) cells by electroporation. The purified proteins were confirmed by Western blot and B7-1 binding assay for their binding ability. The suppressive capacity of CTLA-4Ig-CTKC was evaluated by the mixed lymphocyte reaction (MLR) and in the allogeneic pancreatic islet transplantation model. CTLA-4Ig-CTKC maintained binding ability to B7-1 molecule and effectively inhibits T cell proliferation in MLR. In the murine allogeneic pancreatic islet transplantation, short-term treatment of CTLA-4Ig-CTKC prolonged the graft survival over 100 days. CTLA-4Ig-CTKC effectively inhibits immune response both in MLR and in allogeneic islet transplantation model, indicating that single amino acid mutation does not affect the inhibitory function of CTLA-4Ig. CTLA-4Ig-CTKC can be used in vehicle-mediated drug delivery system such as liposome conjugation.

백서 설신경 압박손상모델에서 신경성장인자 유전자 주입이 신경재생에 미치는 영향 (EFFECT OF NERVE GROWTH FACTOR GENE INJECTION ON THE NERVE REGENERATION IN RAT LINGUAL NERVE CRUSH-INJURY MODEL)

  • 고은봉;정헌종;안강민;김성민;김윤희;장정원;이종호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권5호
    • /
    • pp.375-395
    • /
    • 2006
  • Purpose: Lingual nerve (LN) damage may be caused by either tumor resection or injury such as wisdom tooth extraction, Although autologous nerve graft is sometimes used to repair the damaged nerve, it has the disadvantage of necessity of another operation for nerve harvesting. Moreover, the results of nerve grafting is not satisfactory. The nerve growth factor (NGF) is well-known to play a critical role in peripheral nerve regeneration and its local delivery to the injured nerve has been continuously tried to enhance nerve regeneration. However, its application has limitations like repeated administration due to short half life of 30 minutes and an in vivo delivery model must allow for direct and local delivery. The aim of this study was to construct a well-functioning $rhNGF-{\beta}$ adenovirus for the ultimate development of improved method to promote peripheral nerve regeneration with enhanced and extended secretion of hNGF from the injured nerve by injecting $rhNGF-{\beta}$ gene directly into crush-injured LN in rat model. Materials and Methods: $hNGF-{\beta}$ gene was prepared from fetal brain cDNA library and cloned into E1/E3 deleted adenoviral vector which contains green fluorescence protein (GFP) gene as a reporter. After large scale production and purification of $rhNGF-{\beta}$ adenovirus, transfection efficiency and its expression at various cells (primary cultured Schwann cells, HEK293 cells, Schwann cell lines, NIH3T3 and CRH cells) were evaluated by fluorescent microscopy, RT-PCR, ELISA, immunocytochemistry. Furthermore, the function of rhNGF-beta, which was secreted from various cells infected with $rhNGF-{\beta}$ adenovirus, was evaluated using neuritogenesis of PC-12 cells. For in vivo evaluation of efficacy of $rhNGF-{\beta}$ adenovirus, the LNs of 8-week old rats were exposed and crush-injured with a small hemostat for 10 seconds. After the injury, $rhNGF-{\beta}$ adenovirus($2{\mu}l,\;1.5{\times}10^{11}pfu$) or saline was administered into the crushed site in the experimental (n=24) and the control group (n=24), respectively. Sham operation of another group of rats (n=9) was performed without administration of either saline or adenovirus. The taste recovery and the change of fungiform papilla were studied at 1, 2, 3 and 4 weeks. Each of the 6 animals was tested with different solutions (0.1M NaCl, 0.1M sucrose, 0.01M QHCl, or 0.01M HCl) by two-bottle test paradigm and the number of papilla was counted using SEM picture of tongue dorsum. LN was explored at the same interval as taste study and evaluated electro-physiologically (peak voltage and nerve conduction velocity) and histomorphometrically (axon count, myelin thickness). Results: The recombinant adenovirus vector carrying $rhNGF-{\beta}$ was constructed and confirmed by restriction endonuclease analysis and DNA sequence analysis. GFP expression was observed in 90% of $rhNGF-{\beta}$ adenovirus infected cells compared with uninfected cells. Total mRNA isolated from $rhNGF-{\beta}$ adenovirus infected cells showed strong RT-PCR band, however uninfected or LacZ recombinant adenovirus infected cells did not. NGF quantification by ELISA showed a maximal release of $18865.4{\pm}310.9pg/ml$ NGF at the 4th day and stably continued till 14 days by $rhNGF-{\beta}$ adenovirus infected Schwann cells. PC-12 cells exposed to media with $rhNGF-{\beta}$ adenovirus infected Schwann cell revealed at the same level of neurite-extension as the commercial NGF did. $rhNGF-{\beta}$ adenovirus injected experimental groups in comparison to the control group exhibited different taste preference ratio. Salty, sweet and sour taste preference ratio were significantly different after 2 weeks from the beginning of the experiment, which were similar to the sham group, but not to the control group.