• Title/Summary/Keyword: DNA chips

Search Result 82, Processing Time 0.024 seconds

Oligomer Probe Sequence Design System in DNA Chips for Mutation Detection

  • Lee, Kyu-Sang
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.87-96
    • /
    • 2001
  • 삼성종합기술원에서는 인간의 genomic DNA의 이상을 발견하여 이와 연관된 질병을 진단하는 DNA chip을 개발하고 있다. 이를 위하여 특정한 염기서열의 변화에 따라 민감하게 hybridization strength가 변화하는 oligomer를 선택해야 한다. 따라서, specificity가 가장 큰 probe를 골라내야 한다. 여기에는 열역학적인 고려와 여러가지 물리화학적인 approximation이 사용되며, DNA chip 생산 공정에 의존하는 요소도 포함되어 있다 모든 생산용 data와 결과의 분석은 database를 기반으로 이루어지며, 자동화된 통계적 분석법과 최적화 방법이 함께 사용된다.

  • PDF

Highly Integrated DNA Chip Microarrays by Hydrophobic Interaction

  • Park, Yong-Sung;Kim, Do-Kyin;Kwon, Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.2
    • /
    • pp.23-27
    • /
    • 2001
  • Microarray-based DNA chips provide an architecture for multi-analyte sensing. In this paper, we report a new approach for DNA chip microarray fabrication. Multifunctional DNA chip microarrays were made by immobilizing many kinds if DNAs on transducers (particles). DNA chip microarrays were prepared by randomly distributing a mixture of the particles on a chip pattern containing thousands of micro meter-scale sites. The particles occupied different sites from array to array. Each particle cam be distinguished by a tag that is established on the particle. The particles were arranged on the chip pattern by the random fluidic self-assembly (RFSA) method, using hydrophobic interaction.

Optimized Condition of Genomic DNA Extraction and PCR Methods for GMO Detection in Potato (유전자재조합 감자의 검정을 위한 DNA분리 및 PCR검출의 최적조건 탐색)

  • Shin, Weon-Sun;Kim, Myung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.591-597
    • /
    • 2003
  • To compare the quality of genomic DNA extracted from potato for PCR detection, four different methods, such as silica-based membrane method, silica-coated bead method, STE solution treatment, and CTAB-phenol/chloroform method, were evaluated. Also, to remove an excessive carbohydrate from the potato, ${\alpha}$- and ${\beta}$-amylase were used individually and in combination. When used both silica-based membrane method and silica-coated bead method combined with enzymes, the genomic DNAs were extracted from the raw potato with high purity for PCR. However, the silica-coated head method combined with enzyme treatment was the most efficient for extraction of the genomic DNA from the frozen fried potatoes. When applied with STE solution, the highly purified DNA was extracted from the raw potatoes without enzyme treatment in adequate yield for PCR. In cases of processed potatoes, such as frozen-fried potato and fabricated potato chips, CTAB-phenol/chloroform method is mostly feasible for DNA extraction and PCR efficacy at high sensitivity. As the results of PCR amplification, 216bp of PCR product was detected on 2% agarose gel electrophoresis, but any amplicons derived from New leaf and New leaf Y gene was not detected in any sample.