• Title/Summary/Keyword: DNA benzo[a]pyrene

Search Result 72, Processing Time 0.026 seconds

OXIDATIVE DAMAGE, DNA REPAIR AND SIGNAL TRANSDUCTION IN CHEMICAL TERATOGENESIS.

  • Peter G Wells;Yadvinder Bhuller;Connie S Chen;Jeffrey T Henderson;Winnie Jeng;Sonja Kasapinovic;Julia C Kennedy;Rebecca R Laposa;Christopher J Nicol;Toufan Parman;Michael J Wiley;Louise M Winn;Andrea W Wong
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.44-64
    • /
    • 2002
  • Embryonic prostaglandin H synthases (PHSs) and lipoxygenases bioactivate xenobiotics (phenytoin, thalidomide, benzo[a]pyrene) to free radical intermediates that initiate reactive oxygen species (ROS) formation, which oxidatively damage cellular macromolecules and/or alter signal transduction.(omitted)

  • PDF

The Role of Gene-environment Interaction in Environmental Carcinogenesis (환경성 발암 기전에서 유전자-환경 상호작용의 역할)

  • Han, So-Hee;Lee, Kyoung-Mu
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • Evidences supporting gene-environment interaction are accumulating in terms of environmental exposure including lifestyle factors and related genetic variants. One form of defense mechanism against cancer development involves a series of genes whose role is to metabolize (activation/detoxification) and excrete potentially toxic compounds and to repair subtle mistakes in DNA. The purpose of this article is to provide a brief review of the notion of gene-environment interaction, environmental/occupational carcinogens and related cancers, and previous studies of gene-environment interaction on cancers caused by exposure to carcinogenesis. With a number of studies on the interaction between lifestyle factors (e.g., smoking and diet) and genetic polymorphisms in genes involved in xenobiotic metabolism and DNA repair excluded, only several studies have been conducted on the interactive effects between polymorphisms of CYPs, GSTs, ERCCs, XRCCs and environmental/occupational carcinogens such as vinyl chloride, benzo[a]pyrene, and chloroform on carcinogenesis or genotoxicity. Future studies may need to be conducted with sufficient number of subjects and based on occupational cohorts to provide useful information in terms of advanced risk assessment and regulation of exposure level.

Development of in vitro Short-term Carcinogenicity Test Method and its Mechanism of Action

  • Cho, Dae-Hyun;Kim, Jun-Gyou-;Ahn, Mi-Young;Park, Mi-Kyung-;Moon, Byung-Woo;Moon, Hwa-Hwey;Lee, Byung-Mu-
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.336-336
    • /
    • 1994
  • In order to develope the in vitro short term screen-ing method for carcinogen, we studied a purification method for thymine glycol in oxidaized DNA. Thymine glycol (5,6-dihydroxy-5, 6-dihydrothymine) is the major stable radiolysis poduct in thymine by chemical oxidants and ionzing radiation and it is a useful biomarker among oxidized DNA adducts, related with carcinogenests. Standard thymine glycol was prepared by oxidation of 〔$^3$H〕 thymine with KMnO$_4$ followed by purification with HPLC-LSC system and it was assayed by TLC and gas chromatography-MSD. 〔$^3$H〕 DMA adducts was isolated from E. coli (wild type ) treated with oxidative agents such as benzo(a)pyrene, adriamycin, aflatoxin B$_1$ and KBrO$_3$. These oxidative agents generated free radicals in cells by oxidative metabolism. As a result, thymine glycol was produced in cultured E. coli by four chemicals. This result shows that this methodology should be useful tool in screening oxidative carcinogen.

  • PDF

Genotoxicity of Total Suspended Particulate in Chuncheon Area (춘천지역 대기부유분진의 DNA 손상효과)

  • Kim, Nam-Yee;Lim, Beng-Chan;Weon, Wun-Jae;Hyun, Geun-Woo;Choi, Geum-Jong;Song, Eun-Jeong;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.415-423
    • /
    • 2007
  • This study was to evaluate the genotoxic effects of airborne particulate matters using single cell gell elec trophoresis (comet assay) in A549 human lung carcinoma cells. The total suspended particulate (TSP) was collected on back-up filter in Chuncheon, Kangwon Do, South Korea from April, 2003 to February, 2005. The concentrations of TSP, B(a)p and most of heavy metals seemed to be higher in spring and winter, and lower in summer. And they showed higher concentration in the commercial areas and the residential area having more traffics than in the rural area. It was found that A549 cells interacting with the organic extract of TSP showed more DNA single-strand breaks compare to untreated cells. The genotoxicity of the organic extract of TSP was increased with the pre-treatment of S-9 mixture during the culture or with the treatment of endonuclease after cell lysis. The DNA damage by the organic extract of TSP was higher in winter and the commercial area than in summer and the rural area. This study suggests that TSP, heavy metals and B(a)P analyzed showed significant variation depend on the seasons and the areas which are correlated with the DNA damage evaluated by Comet assay, indicating that genotoxic biomarker is useful for toxicological evaluation of air quality.

Detection of DNA Damage in Carp Using Single-Cell Gel Electrophoresis Assay for Genotoxicity Monitoring

  • Jin, Hai-Hong;Lee, Jae-Hyung;Hyun, Chang-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.268-275
    • /
    • 2004
  • To investigate the potential application of the single-cell gel electrophoresis (SCGE) assay to carp as an aquatic pollution monitoring technique, gill, liver, and blood cells were isolated from carp exposed to a direct-acting mutagen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), or indirect mutagen, $benzo[\alpha]pyrene$ $(B[\alpha]P)$, then the DNA strand breakage was analyzed using the assay. Based on testing 5 different cell isolation methods and 6 electrophoretic conditions, the optimized assay conditions were found to be cell isolation by filter pressing and electrophoresis at a lower voltage and longer running time (at 0.4 V/cm for 40 min). In preliminary experiments, gill and liver cells isolated from carp exposed to MNNG in vitro exhibited DNA damage signals even with 0.5 ppb exposure, which is a much higher dose than previously reported. In the gill cells isolated from carp exposed to 0.01-0.5 ppm MNNG in vivo, significant dose-and time-dependent increases were observed in the tail for 4 days. As such, the linear correlation between the relative damage index (RDI) values and time for each dose based on the initial 48-h exposure appeared to provide effective criteria for the genotoxicity monitoring of direct-acting mutagenic pollution. In contrast, the in vivo exposure of carp to 0.25-1.0 ppm of $B[\alpha]P$ for 7 days resulted in dose-and time-dependent responses in the liver cells, in which 24-h delayed responses for metabolizing activation and gradual repair after 48 h were also observed. Thus, the negative-sloped linear correlation between the RDI and time at each dose based on the initial 48 h appeared to provide more effective criteria for the genotoxicity monitoring of indirect mutagenic pollution.

STUDY CYTOCHROME P450IA1 GENE EXPRESSION BY RTPCR.

  • Lee, Soo-Young;Yhun Y. Sheen
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.128-128
    • /
    • 1995
  • To investigate the mechanism of the regulation of cytochrome P450IA1 gene expression, ethoxyresorufin deethylase(EROD) and benzo(a)pyrene hydroxylase in B6 mouse liver, in isolated perfused rat liver system. and in B6 mouse hepatocyte Hepa-I cells were examined. In C57BL/6N mouse, 3-methylcholan- throne( 3MC ) treatment have resulted in the stimulation of EROD activity based on fluorometry by 2.79 fold comparirng with that of control. Measurement of mRNA of cytochrome P450 was carried out by either nothern blot or dot blot analysis. Findings are similar to that of studies with enzymes. Furhtermore, when RTPCR method was applied to detect mRNA in Hepa I cell and liver tissues the results were more clear. Cytochrome P450IA1 upstream DNA containing CAT construct was transfected into Hepa-1 cells. After transfection of CAT construct, 3MC and flavonoids, such as, chrysin, hesperetin, kaempferol, morin, myricetin and aminoyrine were treated. 48 Hours after treatments, cells were harvested and assayed for CAT mRNA by RTPCR. 3MC treatment to hepa I cells transfected with trout P450IA1-CAT construct increased CAT mRNA by 2.81 fold when it was compared with that of control. This increase CAT mRNA was decreased by concomitantly treated flavonoids and aminopyrine. The level of CAT protein was 29.2-58.0% of 3MC stimulated CAT protein. Results of this study suggested that RTPCR seems to be a very good method to study regulation of gene expression in liver tissue or Hepa cells.

  • PDF

Error-Prone and Error-Free Translesion DNA Synthesis over Site-Specifically Created DNA Adducts of Aryl Hydrocarbons (3-Nitrobenzanthrone and 4-Aminobiphenyl)

  • Yagi, kashi;Fujikawa, Yoshihiro;Sawai, Tomoko;Takamura-Enya, Takeji;Ito-Harashima, Sayoko;Kawanishi, Masanobu
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.265-272
    • /
    • 2017
  • Aryl hydrocarbons such as 3-nitrobenzanthrone (NBA), 4-aminobiphenyl (ABP), acetylaminofluorene (AAF), benzo(a)pyrene (BaP), and 1-nitropyrene (NP) form bulky DNA adducts when absorbed by mammalian cells. These chemicals are metabolically activated to reactive forms in mammalian cells and preferentially get attached covalently to the $N^2$ or C8 positions of guanine or the $N^6$ position of adenine. The proportion of $N^2$ and C8 guanine adducts in DNA differs among chemicals. Although these adducts block DNA replication, cells have a mechanism allowing to continue replication by bypassing these adducts: translesion DNA synthesis (TLS). TLS is performed by translesion DNA polymerases-Pol ${\eta}$, ${\kappa}$, ${\iota}$, and ${\zeta}$ and Rev1-in an error-free or error-prone manner. Regarding the NBA adducts, namely, 2-(2'-deoxyguanosin-$N^2$-yl)-3-aminobenzanthrone (dG-$N^2$-ABA) and N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-ABA), dG-$N^2$-ABA is produced more often than dG-C8-ABA, whereas dG-C8-ABA blocks DNA replication more strongly than dG-$N^2$-ABA. dG-$N^2$-ABA allows for a less error-prone bypass than dG-C8-ABA does. Pol ${\eta}$ and ${\kappa}$ are stronger contributors to TLS over dG-C8-ABA, and Pol ${\kappa}$ bypasses dG-C8-ABA in an error-prone manner. TLS efficiency and error-proneness are affected by the sequences surrounding the adduct, as demonstrated in our previous study on an ABP adduct, N-(2'-deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-ABP). Elucidation of the general mechanisms determining efficiency, error-proneness, and the polymerases involved in TLS over various adducts is the next step in the research on TLS. These TLS studies will clarify the mechanisms underlying aryl hydrocarbon mutagenesis and carcinogenesis in more detail.

Nanopharmaceutical Approach for Enhanced Anti-cancer Activity of Betulinic Acid in Lung-cancer Treatment via Activation of PARP: Interaction with DNA as a Target -Anti-cancer Potential of Nano-betulinic Acid in Lung Cancer-

  • Das, Jayeeta;Samadder, Asmita;Das, Sreemanti;Paul, Avijit;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Objectives: This study examined the relative efficacies of a derivative of betulinic acid (dBA) and its poly (lactide-co-glycolide) (PLGA) nano-encapsulated form in A549 lung cancer cells in vivo and in co-mutagen [sodium arsenite (SA) + benzo[a]pyrene (BaP)]-induced lung cancer in mice in vivo. Methods: dBA was loaded with PLGA nanoparticles by using the standard solvent displacement method. The sizes and morphologies of nano-dBA (NdBA) were determined by using transmission electron microscopy (TEM), and their intracellular localization was verified by using confocal microscopy. The binding and interaction of NdBA with calf thymus deoxyribonucleic acid (CT-DNA) as a target were analyzed by using conventional circular dichroism (CD) and melting temperature (Tm) profile data. Apoptotic signalling cascades in vitro and in vivo were studied by using an enzyme-linked immunosorbent assay (ELISA); the ability of NdBA to cross the blood-brain barrier (BBB) was also examined. The stage of cell cycle arrest was confirmed by using a fluorescence-activated cell-sorting (FACS) data analysis. Results: The average size of the nanoparticles was ~ 110 nm. Confocal microscopy images confirmed the presence of NdBA in the cellular cytoplasm. The bio-physical properties of dBA and NdBA ascertained from the CD and the Tm profiles revealed that NdBA had greater interaction with the target DNA than dBA did. Both dBA and NdBA arrested cell proliferation at G0/G1, NdBA showing the greater effect. NdBA also induced a greater degree of cytotoxicity in A549 cells, but it had an insignificant cytotoxic effect in normal L6 cells. The results of flow cytometric, cytogenetial and histopathological studies in mice revealed that NdBA caused less nuclear condensation and DNA damage than dBA did. TEM images showed the presence of NdBA in brain samples of NdBA fed mice, indicating its ability to cross the BBB. Conclusion: Thus, compared to dBA, NdBA appears to have greater chemoprotective potential against lung cancer.

Mutagenicity and Antimutagenicity of Hydrophilic and Lipophilic Extracts of Thai Northern Purple Rice

  • Punvittayagul, Charatda;Sringarm, Korawan;Chaiyasut, Chaiyawat;Wongpoomchai, Rawiwan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9517-9522
    • /
    • 2014
  • Purple rice (Oryza sativa L. var. indica) cv. Kum Doisaket is cultivated in northern Thailand. This study evaluated the mutagenic and antimutagenic properties of hydrophilic and lipophilic components of purple rice using the Ames test. The seed and hull of purple rice were extracted with hexane, methanol, ethanol, and water. The methanol extracts had the highest amounts of phenolic acids and flavonoids, while the hexane extracts contained large amount of tocols and ${\gamma}$-oryzanol. None of the extracts were mutagenic in Salmonella typhimurium strains TA98 and TA100. The hexane extract of rice hull and the methanol extract of rice seed were strongly effective against aflatoxin B1- and 2-amino-3, 4 dimethylimidazo (4, 5-f) quinoline-induced mutagenesis, while aqueous extracts showed weakly antimutagenic properties. All extracts with the exception of aqueous extracts enhanced the number of revertant colonies from benzo (a) pyrene induced-mutagenesis. None of the extracts inhibited mutagenesis induced by the direct mutagens 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide and sodium azide. The hull extracts showed more potent antimutagenicity than the seed extracts. Based on a chemical analysis, ${\gamma}$-oryzanol and ${\gamma}$-tocotrienol in the hull and cyanidin-3-glucoside and peonidin-3-glucoside in the seed are candidate antimutagens in purple rice. The antimutagenic mechanisms of purple rice might be related to either modulation of mutagen metabolizing enzymes or direct attack on electrophiles. These findings supported the use of Thai purple rice as a cancer chemopreventive agent.