• Title/Summary/Keyword: DNA barcode

Search Result 138, Processing Time 0.027 seconds

New record of the family Porcellidiidae Boeck, 1865 (Harpacticoida, Copepoda) in Korea

  • Seunghan Lee;Jaehyun Kim;Wonchoel Lee
    • Journal of Species Research
    • /
    • v.12 no.1
    • /
    • pp.27-37
    • /
    • 2023
  • Kushia zosteraphila Harris V.A. & Iwasaki, 1996 is newly collected and described from macroalgae in the intertidal region of Gijang-gun, along the southeastern coastal region of Korea. Kushia zosteraphila can be distinguished from congeners by following morphological characteristics: the length of the first dorsal seta similar with the second dorsal seta of female P5, the length to width ratio of the female caudal ramus, and the presence of a conspicuous comb on the accessory lobe of the male antennule. Although there are some minor discrepancies, the main diagnostic characteristics of the specimen from the study area are well-matched with the original description. We herein provide detailed morphological descriptions and illustrations of this species. According to a survey of the location of the reported porcellidiid species in Korea, this specimen is the second record in Korean waters of the genus Kushia. A key to species of the family Porcellidiidae in Korea is provided. A partial sequence of the mitochondrial COI gene was obtained and provided as a DNA barcode for this species.

Single-Cell Molecular Barcoding to Decode Multimodal Information Defining Cell States

  • Ik Soo Kim
    • Molecules and Cells
    • /
    • v.46 no.2
    • /
    • pp.74-85
    • /
    • 2023
  • Single-cell research has provided a breakthrough in biology to understand heterogeneous cell groups, such as tissues and organs, in development and disease. Molecular barcoding and subsequent sequencing technology insert a single-cell barcode into isolated single cells, allowing separation cell by cell. Given that multimodal information from a cell defines precise cellular states, recent technical advances in methods focus on simultaneously extracting multimodal data recorded in different biological materials (DNA, RNA, protein, etc.). This review summarizes recently developed single-cell multiomics approaches regarding genome, epigenome, and protein profiles with the transcriptome. In particular, we focus on how to anchor or tag molecules from a cell, improve throughputs with sample multiplexing, and record lineages, and we further discuss the future developments of the technology.

A New Record of Phyllidia varicosa (Nudibranchia: Phyllidiidae) from Korea

  • Dae-Wui Jung;Chang-Bae Kim
    • Animal Systematics, Evolution and Diversity
    • /
    • v.39 no.4
    • /
    • pp.284-288
    • /
    • 2023
  • In this article, a phyllidiid nudibranch which is distributed widely in the Indo-Pacific region, Phyllidia varicose Lamarck, 1801, is reported based on a specimen collected from Seopseom Islet, Jeju Island, Korea. This species is characterized by bluish-gray dorsal tubercles with a yellow cap and three distinct ridges consisting of dorsal tubercles going from the anterior to posterior region, the presence of bluish-black pigment between the dorsal ridges, and a characteristic black longitudinal stripe along the midline of the sole. In this study, we provide a key to species belonging to the genus Phyllidia discovered in Korea, the morphological descriptions, photographs, and a sequence of partial mitochondrial cytochrome c oxidase subunit I of P. varicosa. Currently, four species of the genus Phyllidia have been reported to be present in Korea, including P. varicosa.

Mutation Analysis of Synthetic DNA Barcodes in a Fission Yeast Gene Deletion Library by Sanger Sequencing

  • Lee, Minho;Choi, Shin-Jung;Han, Sangjo;Nam, Miyoung;Kim, Dongsup;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Genomics & Informatics
    • /
    • v.16 no.2
    • /
    • pp.22-29
    • /
    • 2018
  • Incorporation of unique barcodes into fission yeast gene deletion collections has enabled the identification of gene functions by growth fitness analysis. For fine tuning, it is important to examine barcode sequences, because mutations arise during strain construction. Out of 8,708 barcodes (4,354 strains) covering 88.5% of all 4,919 open reading frames, 7,734 barcodes (88.8%) were validated as high-fidelity to be inserted at the correct positions by Sanger sequencing. Sequence examination of the 7,734 high-fidelity barcodes revealed that 1,039 barcodes (13.4%) deviated from the original design. In total, 1,284 mutations (mutation rate of 16.6%) exist within the 1,039 mutated barcodes, which is comparable to budding yeast (18%). When the type of mutation was considered, substitutions accounted for 845 mutations (10.9%), deletions accounted for 319 mutations (4.1%), and insertions accounted for 121 mutations (1.6%). Peculiarly, the frequency of substitutions (67.6%) was unexpectedly higher than in budding yeast (~28%) and well above the predicted error of Sanger sequencing (~2%), which might have arisen during the solid-phase oligonucleotide synthesis and PCR amplification of the barcodes during strain construction. When the mutation rate was analyzed by position within 20-mer barcodes using the 1,284 mutations from the 7,734 sequenced barcodes, there was no significant difference between up-tags and down-tags at a given position. The mutation frequency at a given position was similar at most positions, ranging from 0.4% (32/7,734) to 1.1% (82/7,734), except at position 1, which was highest (3.1%), as in budding yeast. Together, well-defined barcode sequences, combined with the next-generation sequencing platform, promise to make the fission yeast gene deletion library a powerful tool for understanding gene function.

Mitochondrial DNA Sequence Variation of the Tiny Dragonfly, Nannophya pygmaea(Odonata: Libellulidae)

  • Kim, Ki-Gyoung;Jang, Sang-Kyun;Park, Dong-Woo;Hong, Mee-Yeon;Oh, Kyoung-Hee;Kim, Kee-Young;Hwang, Jae-Sam;Han, Yeon-Soo;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.1
    • /
    • pp.47-58
    • /
    • 2007
  • The tiny dragonfly, Nannophya pygmaea(Odonata: Libellulidae) is one the smallest dragonflies in the world and listed as a second-degree endangered wild animal and plant in Korea. For the long-term conservation of such endangered species, an investigation on nation-wide genetic magnitude and nature of genetic diversity is required as a part of conservation strategy. We, thus, sequenced a portion of mitochondrial COI gene, corresponding to "DNA Barcode" region(658 bp) from 68 N. pygmaea individuals collected over six habitats in Korea. The sequence data were used to investigate genetic diversity within populations and species, geographic variation within species, phylogeographic relationship among populations, and phylogenetic relationship among haplotypes. Phylogenetic analysis and uncorrected pairwise distance estimate showed overall low genetic diversity within species. Regionally, populations in southern localities such as Gangjin and Gokseong in Jeollanamdo Province showed somewhat higher genetic diversity estimates than those of remaining regions in Korean peninsula. Although geographic populations of N. pygmaea were subdivided into two groups, distance- or region-based geographic partition was not observed.

Geographic Genetic Contour of a Ground Beetle, Scarites aterrimus (Coleoptera: Carabidae) on the Basis of Mitochondrial DNA Sequence

  • Wang, Ah-Rha;Kim, Min-Jee;Cho, Young-Bok;Wan, Xinlong;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.22 no.2
    • /
    • pp.65-74
    • /
    • 2011
  • The Scarites aterrimus (Coleoptera: Carabidae), is one of the carabid beetles dwelling exclusively on coastal sandy dunes. Habitat deterioration and equivalent activity have greatly concerned population declines in several species dwelling on the coastal sandy dunes. As a first step to establish long-term conservation strategy, we investigated the nation-wide magnitude and nature of genetic diversity of the species. As a first step, we sequenced a portion of mitochondrial COI gene, corresponding to "DNA Barcode" region (658 bp) from a total of 24 S. aterrimus individuals collected over nine sandy dunes belonging to four Korean provinces. The sequence analysis evidenced moderate to low magnitude of sequence diversity compared with other insect species distributed in Korean peninsula (0.152% to 0.912%). The presence of closely related haplotypes and relatively high gene flow estimate collectively suggest that there had been no historical barriers that bolster genetic subdivision. Population decline was postulated on the basis of several missing haplotypes that are well found in the species with a large population size. This interpretation is consistent with field observation of small population size in the coastal sandy dune habitats. The highest genetic diversity estimates were found in the coastal sand dune population of Seogwipo, Jeju Island, justifying a prior attention to the population, in order to sustain overall genetic diversity of the species. Further scrutinized study might be required for further robust conclusion.

Development SCAR marker for the rapid authenticaton of Batryticatus Bombyx based on COI Sequences (COI 염기서열 기반 백강잠 신속 감별용 SCAR marker 개발 - 백강잠 유전자 감별 -)

  • Kim, Wook Jin;Yang, Sungyu;Noh, Pureum;Park, Inkyu;Choi, Goya;Song, Jun-Ho;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.34 no.5
    • /
    • pp.13-20
    • /
    • 2019
  • Objectives : To ensure the safety, quality and pharmacological efficacy of Batryticatus Bombyx, it is important to discriminate with adulterants. In Korean Herbal Pharmacopoeias (KHP), the authentic species of Batryticatus Bombyx is defined only Bombyx mori. Therefore, the aim of this study is establishment of PCR assay method using the sequence characterized amplified region (SCAR) marker based on COI DNA barcode for discriminating six species related to Batryticatus Bombyx. Methods : Seventeen samples of six species (Bombyx mori, Bombyx mandarina, Rhodinia fugax, Oberthueria caeca, Actias artemis, and Caligula japponica) were collected from different habitate and nucleotide sequences of cytochrome c oxidase subunit I(COI) barcode regions were analyzed by Sanger sequencing methods. To develop SCAR-based PCR assay method, we designed species-specific primers based on COI sequence variabilities and verified those specificities using 17 samples of six species as well as commercial herbal medicines. Results : In comparative multiple analysis of COI sequences, six species were distinguished by species-specific nucleotides at the species level. To develop rapid and reliable PCR assay method for genetic authentication of Batryticatus Bombyx, therefore, we designed species-specific SCAR primers based on these nucleotide sequences and confirmed those specificities. Using these SCAR primers, We also established simple conventional PCR assay method using these SCAR primers at the species level. Conclusions : The comparative analysis of COI sequences and SCAR-based PCR assay methods represented equal results for distinguishing authentic Batryticatus Bombyx and adulterations at the species level. Therefore, our results are expected protecting adulteration of herbal medicine Batryticatus Bombyx.

Species Identification and Monitoring of Labeling Compliance for Commercial Pufferfish Products Sold in Korean On-line Markets (국내 온라인 유통 복어 제품의 종판별 및 표시사항 모니터링 연구)

  • Ji Young Lee;Kun Hee Kim;Tae Sun Kang
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.464-475
    • /
    • 2023
  • In this study, based on an analysis of two DNA barcode markers (cytochrome c oxidase subunit I and cytochrome b genes), we performed species identification and monitored labeling compliance for 50 commercial pufferfish products sold in on-line markets in Korea. Using these barcode sequences as a query for species identification and phylogenetic analysis, we screened the GenBank database. A total of seven pufferfish species (Takifugu chinensis, T. pseudommus, T. xanthopterus, T. alboplumbeus, T. porphyreus, T. vermicularis, and Lagocephalus cheesemanii) were identified and we detected 35 products (70%) that were non-compliant with the corresponding label information. Moreover, the labels on 12 commercial products contained only the general common name (i.e., pufferfish), although not the scientific or Korean names for the 21 edible pufferfish species. Furthermore, the proportion of mislabeled highly processed products (n = 9, 81.8%) was higher than that of simply processed products (n = 26, 66.7%). With respect to the country of origin, the percentage of mislabeled Chinese products (n = 8, 80%) was higher than that of Korean products (n = 26, 66.7%). In addition, the market and dialect names of different pufferfish species were labeled only as Jolbok or Milbok, whereas two non-edible pufferfish species (T. vermicularis and T. pseudommus) were used in six commercial pufferfish products described as JolboK and Gumbok on their labels, which could be attributable to the complex classification system used for pufferfish. These monitoring results highlight the necessity to develop genetic methods that can be used to identify the 21 edible pufferfish species, as well as the need for regulatory monitoring of commercial pufferfish products.

Converting Panax ginseng DNA and chemical fingerprints into two-dimensional barcode

  • Cai, Yong;Li, Peng;Li, Xi-Wen;Zhao, Jing;Chen, Hai;Yang, Qing;Hu, Hao
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.339-346
    • /
    • 2017
  • Background: In this study, we investigated how to convert the Panax ginseng DNA sequence code and chemical fingerprints into a two-dimensional code. In order to improve the compression efficiency, GATC2Bytes and digital merger compression algorithms are proposed. Methods: HPLC chemical fingerprint data of 10 groups of P. ginseng from Northeast China and the internal transcribed spacer 2 (ITS2) sequence code as the DNA sequence code were ready for conversion. In order to convert such data into a two-dimensional code, the following six steps were performed: First, the chemical fingerprint characteristic data sets were obtained through the inflection filtering algorithm. Second, precompression processing of such data sets is undertaken. Third, precompression processing was undertaken with the P. ginseng DNA (ITS2) sequence codes. Fourth, the precompressed chemical fingerprint data and the DNA (ITS2) sequence code were combined in accordance with the set data format. Such combined data can be compressed by Zlib, an open source data compression algorithm. Finally, the compressed data generated a two-dimensional code called a quick response code (QR code). Results: Through the abovementioned converting process, it can be found that the number of bytes needed for storing P. ginseng chemical fingerprints and its DNA (ITS2) sequence code can be greatly reduced. After GTCA2Bytes algorithm processing, the ITS2 compression rate reaches 75% and the chemical fingerprint compression rate exceeds 99.65% via filtration and digital merger compression algorithm processing. Therefore, the overall compression ratio even exceeds 99.36%. The capacity of the formed QR code is around 0.5k, which can easily and successfully be read and identified by any smartphone. Conclusion: P. ginseng chemical fingerprints and its DNA (ITS2) sequence code can form a QR code after data processing, and therefore the QR code can be a perfect carrier of the authenticity and quality of P. ginseng information. This study provides a theoretical basis for the development of a quality traceability system of traditional Chinese medicine based on a two-dimensional code.

Species Identification and Molecular Phylogenetic Position of Korean Damselfishes (Pomacentridae: Chrominae) Based on DNA Bioinformation (DNA 생물정보를 이용한 한국산 자리돔과 어류의 분류 및 분자계통학적 위치)

  • Koh, Jeong Rack;Park, Yung Chul
    • Korean Journal of Ichthyology
    • /
    • v.19 no.4
    • /
    • pp.274-285
    • /
    • 2007
  • The subfamily Chrominae of damselfishes (Teleostei: Pomacentridae) includes the genus Chromis and Dascyllus. They are found throughout the tropical oceans and form a major component of coral reef communities. There are 5 species of the Chrominae currently recognized in Korea. This study was conducted to infer phylogenetic position of two Korean Chromis species and one Dascyllus species within general category of their each genus in worldwide level. This study also includes one species of Japanese Dascyllus. In the phylogenetic analysis, the Japanese D. aruanus grouped with D. aruanus previously reported from French Polynesia. Korean Chromis fumea grouped with Australian C. nitida and the p-distance value between the two species is relatively very low (0.047). Korean C. notatus grouped together with C. flavomaculata (New Caledonia). In the sequence analysis of some Korean and Japanese damselfishes, there was no sequence variation between D. melanurus (Jeju, Korea) and D. melanurus (Indo-Pacific), but the sequences of the two populations were different in only one nucleotide sites from that of D. melanurus in Indonesian Archipelago. The sequences of Dascyllus aruanus (Japan) were different in two nucleotide sites from it in French Polynesia. There were high difference between the sequences of two Korean species, Chromis fumea and Korean C. notatus. The variations among mitochondrial cytochrome b sequences indicate that the gene sequence could be used as DNA barcode for identification of local populations of D. aruaus and D. melanurus as well as species level.