• 제목/요약/키워드: DNA and protein synthesis

검색결과 294건 처리시간 0.022초

Evidence for the Ras-Independent Signaling Pathway Regulating Insulin-Induced DNA Synthesis

  • Jhun, Byung-H.
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.196-202
    • /
    • 1999
  • The existence of the Ras-independent signal transduction pathway of insulin leading to DNA synthesis was investigated in Rat-1 fibroblasts overexpressing human insulin receptor (HIRc-B) using the single-cell microinjection technique. Microinjection of a dominant-negative mutant $Ras^{N17}$ protein into quiescent HIRc-B cells inhibited the DNA synthesis stimulated by insulin. Microinjection of oncogenic H-$Ras^{V12}$ protein ($H-Ras^{V12}$) (0.1 mg/ml) induced DNA synthesis by 35%, whereas that of control-injected IgG was induced by 20%. When the marginal amount of oncogenic H-$Ras^{V12}$ protein was coinjected with a dominant-negative mutant of the H-Ras protein ($Ras^{N17}$), DNA synthesis was 35% and 74% in the absence and presence of insulin, respectively. This full recovery of DNA synthesis by insulin suggests the existence of the Ras-independent pathway. The same recovery was observed in the cells coinjected with either H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus SH2 domain of the p85 subunit of PI3-kinase ($p85^{SH2-N}$) or H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus interfering anti-Shc antibody. When co-injected with a dominant-negative H-$Ras^{N17}$, the DNA synthesis induced by the Ras-independent pathway was blocked. These results indicate that the Ras-independent pathway of insulin leading to DNA synthesis exists, bypassing the p85 of PI3-kinase and Shc protein, and requires Rac1 protein.

  • PDF

인장력이 골조직 세포군의 DNA 및 단백합성에 미치는 영향 (THE EFFECT OF TENSILE FORCE ON DNA AND PROTEIN SYNTHESIS IN BONE CELLS)

  • 권오선;김상철
    • 대한치과교정학회지
    • /
    • 제24권4호
    • /
    • pp.933-943
    • /
    • 1994
  • The present study was undertaken to determine the effect of tensile force on DNA and protein biosynthesis in bone cells, and to identify the cell type(s) which primarily respond to external physical force among the heterogenous bone cell populations. As a prerequisite for this study, two bone cell populations which retain fibroblastic and osteoblastic feature were isolated from fetal rat calvaria with sequential enzyme digestion scheme. Tensile force was delivered to each bone cell population by two acrylic resin plates connected with a orthodontic expansion screw during culture period. Rate of DNA and protein synthesis in each bone cell population were assessed by the incorporated radioactivity of $[^3H]-thymidine$ into DNA and $[^3H]-proline$ into fraction of collagenase-digestible protein and noncollagenous protein, respectively. DNA synthesis of osteoblast-like calvarial cell populations was increased significantly by the application of tensile force for 24 hours. In contrast, no alteration in DNA synthesis of fibroblast-like populations could be observed in response to applied force. Tensile force induced the change in protein synthesis of bone cell populations with the same pattern. Total protein and collagen synthesis were increased whithin 24 hours in osteoblast-like populations, but not in fibroblast-like populations by tensile force application. These findings indicate that physical force can affect cellullar activity of the particular cell population, not all cell Populations residing in bone and osteoblasts respond more sensitively than fibroblasts. So osteoblasts can modulate the behavior of other bone cells including osteoclasts by producing several local regulating factors of bone metabolism. In this context, preferential responsiveness of osteoblasts to applied tensile force observed in this study suggests that osteoblasts may play an important role in regulation of physical force-induced remodelling process.

  • PDF

Bacteriophage T7의 유전자 복제기작에 관한 생화학적, 분자생물학적 특성 연구 (Biochemical and Molecular Biological Studies on the DNA Replication of Bacteriophage T7)

  • KIM Young Tae
    • 한국수산과학회지
    • /
    • 제28권2호
    • /
    • pp.209-218
    • /
    • 1995
  • 본 연구에서는 유전자 복제기작을 생화학적, 분자생물학적 방법을 사용하여 bacteriphage T7을 대상으로 연구하였다. Bacteriophage T7의 유전자 복제, 재조합, 수선시 필수 단백질로 작용하는 gene 2.5 단백질의 생체내 기능에 대한 유전학적 연구와 단백질을 분리 정제하여 복제 단백질들과의 상호작용에 대한 연구를 수행하였다. 연구결과 gene 2.5 단백질은 DNA복제시 필수 구성단백질로 작용하며, 복제과정에서 유전자 복제에 관여하는 핵심 단백질들인 DNA polymerase, helicase/primase와 직접 단백질-단백질 상호 협동 작용을 하는 r것을 증명하였다. 특히 gene 2.5 단백질의 C-terminal domain이 절편된 변이체의 경우 복제 단백질들과 상호작용이 결여되었다. 따라서 C-terminal domain이 gene 2.5 단백질의 기능에 필수적으로 관여함을 입증하였다.

  • PDF

인삼 포리아세틸렌 화합물이 Lymphoid lukemia L1210의 고분자물질 합성에 미치는 영향 (Effect of Polyacetylene Compounds from Panax Ginseng on Macromolecule Synthesis of Lymphoid lukemia L1210)

  • 김영숙;김신일;한덕용
    • 약학회지
    • /
    • 제32권2호
    • /
    • pp.137-140
    • /
    • 1988
  • To investigate polyacetylene compounds isolated from petroleum ether extract of panax ginseng effect on the macromolecule synthesis, lympoid lukemia L1210 cell was incubated with them at 4, 8, 12,16 hours. Panaxydol, panaxynol and panaxytriol as cytotoxic substances inhibited the synthesis of macromolecule such as DNA, RNA and protein. Panaxydol which had the most potent cytotoxicity among these three compounds showed the strongest inhibitory effect on DNA, RNA and protein synthesis. For DNA and RNA synthesis, panaxynol and panaxytriol decreased the rate of inhibition with the incubation time but panaxydol had a strongest inhibitory effect at 16 hour incubation time. Protein synthesis was markedly inhibited by all these polyacetylene compounds. It was obserbed that there is a relationship between cytotoxicities of polyacetylene compounds and the inhibition of macromolecule synthesis.

  • PDF

Pertussis Toxin Inhibits Colchicine-Induced DNA Synthesis in Human Fibroblast

  • Jang, Won-Hee;Rhee, In-Ja
    • Archives of Pharmacal Research
    • /
    • 제17권3호
    • /
    • pp.199-203
    • /
    • 1994
  • Several lines evidence indicate that microtubule depolymerization initiates DNA synthesis or enhances the effects of serum or purified growth factors in many types of fibroblasts. Yet little is known about the intracellular events responsible for the mitogenic effect of microtubule disrupting agents. The effects of antitubulin agents on DNA synthesis in sparse and dense cultures in the presence or absence of serum and possible involvement of G-proteins in their mitotic action were examined. In these studies, colchicine by itself appeared to be mitogenic only for confluent quiesecent human lung fibroblasts. In sparse culture, however, colchicine inhibited serum-stimulated DNA synthesis. Colcemid, another antitubulin agent, showed similar effects of growth inhibition and stimulation in sparse and confluent cultures while lumicolhicine, inactive colchicine, did not. The mitogenic effect of two antitubulin agents, colchicine and colcemid, was partially inhibited by pertussis toxin. These data suggest that microtubular integrity is associated with the expression of either negative or positive control on DNA synthesis and mitogenic effect of antitubulin agents may be partially mediated by pertussis toxin-sensitive G protein.

  • PDF

The Bacteriophage λ DNA Replication Protein P Inhibits the oriC DNA- and ATP-binding Functions of the DNA Replication Initiator Protein DnaA of Escherichia coli

  • Datta, Indrani;Sau, Subrata;Sil, Alok Kumar;Mandal, Mitai C.
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.97-103
    • /
    • 2005
  • Under the condition of expression of $\lambda$ P protein at lethal level, the oriC DNA-binding activity is significantly affected in wild-type E. coli but not in the rpl mutant. In purified system, the $\lambda$ P protein inhibits the binding of both oriC DNA and ATP to the wild-type DnaA protein but not to the rpl DnaA protein. We conclude that the $\lambda$ P protein inhibits the binding of oriC DNA and ATP to the wild-type DnaA protein, which causes the inhibition of host DNA synthesis initiation that ultimately leads to bacterial death. A possible beneficial effect of this interaction of $\lambda$ P protein with E. coli DNA initiator protein DnaA for phage DNA replication has been proposed.

연쇄 구균의 세포벽 단백질이 L929 세포의 DNA합성에 미치는 영향 및 SDS-PAGE 양상에 관한 연구 (THE EFFECTS OF CELL WALL PROTEINS OF STREPTOCOCCUS SPP. ON DNA SYNTHESIS OF L929 CELLS AND THEIR SDS-PAGE PATTERNS)

  • 이세종;임미경
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.71-95
    • /
    • 1995
  • Bacteria have been regarded as a one of major etiologic factors in root canal infections. In endodontic treatment the effective removal of pathogenic microorganisms in the root canal is the key to successful outcome. Bacterial cell wall components may play an important role in the development of pulpal and periapical disease. The purpose of this study was to evaluate the effect of sonic extracts of Streptococcus spp. on cultured L929 cells and to characterize cell wall protein profiles of Streptococcus spp. Streptococcus spp. were isolated from infected root canals and identified with Vitek Systems(Biomeriux, USA). Five streptococci, namely S. sanguis, S. mitis, S uberis, S. mutans (ATCC 10449) and S. faecalis (ATCC 19433) weere enriched in brain heart infusion broth. Cell pellets were sonicated and cell wall extracts were dialyzed and membrane filtered. Prepared cell wall proteins were applied to cultured L929 cell. The cell reaction were evaluated by monitoring DNA synthesis, cell numbers and the change of cell morphology. The total cell wall protein profiles of microorganisms were characterized by sodium dodecyl sulfate polyacrylamide-gel eledruphoresis(SDS-PAGE). DNA synthesis of L929 cells were reduced by the increasing concentration of sonic extracts. DNA synthesis was significantly suppressed in more than $50{\mu}g$/ml of sonic extract conentration in five streptococci. S. nutans (ATCC 10449) showed stronger suppression on DNA synthesis than remaining four streptococci, which had the similar effect on DNA synthesis. Analysis of DNA synthesis measured by [$^3H$]-thymidine uptake was more sensitvie method than cell counting. Sonic extracts affected the microscopic findings of L929 cells. The protein profiles indicated that all five strains shared two major proteins with molecular masses of 70.8 and 57.5 kD respectively. S. uberis and S. mutans shared common minor proteins of which molecular weights were 147.9 and 112.2 kD respectively. However some minor proteins were unique for S. mitis, S. uberis and S. faecalis.

  • PDF

생약 추출물이 세포성장 및 cytokine 생산에 미치는 영향 (THE EFFECT OF NATURAL EXTRACTS ON CELL GROWTH AND CYTOKINE PRODUCTION)

  • 류인철;손성희;정종평;배기환
    • Journal of Periodontal and Implant Science
    • /
    • 제23권1호
    • /
    • pp.37-47
    • /
    • 1993
  • The native connective tissue attachment of the periodontium is known to be a complex consisting of gingival fibroblasts, periodontal ligament cells, gingival epithelial cells, cementum, alveolar bone and extensive extracellular matrix (collagen, glycoprotein and proteoglycans). The purpose of this study was to evaluate the effects of natural extracts on DNA, collagen and protein synthesis and inhibition of cytokine production in the gingival and periodontal ligament fibroblasts and gingival epithelial cells. Healthy gingival tissue was obtained from orthodontic treatment patients, and gingival epithelial cells, gingival fibroblasts and periodontal ligament cells were isolated and cultured from the samples. After treated with Ginseng protein, Pluronic F-68, Scutellariae Radix, centella asiatica, PDGF, IGF, DNA synthesis, total protein and collagen synthesis, and cytokine production of gingival epithelial cell, gingival fibroblast and periodontal ligamentcells were measured. MTT method for DNA synthesis, Peterkofsky and Dingerman method for total protein and collagen synthesis, and IL-1 ELISA kit for cytokine production were used. The proliferation of epithelial cells was enhanced in Centella asiatica, Ginseng protein, Pluronic F-68 and Scutellariae Radix. The activities of PDL cells were increased in PDGF, IGF, and Pluronic F-68. Higher collagen synthesis was observed in Scutellariae Radix and total protein synthesis was increased in Scutellariae Radix and PDGF. The inhibitory effects on IL-1, IL-6, $TNF-{\alpha}$ were observed in all exrracts.

  • PDF

Alachlor의 제초기구(除草機構)에 관한 연구(硏究) - I.Alachlor가 귀리의 핵산(核酸), 아미노산 및 단백질합성(蛋白質合成)에 미치는 영향(影響) (A Study of Mode of Action of Alachlor - I. Effects of Alachlor on Nucleic acid, Amino acid and Protein Synthesis in Oat(Avena sativa L.))

  • 권성환;김재철
    • 한국잡초학회지
    • /
    • 제10권3호
    • /
    • pp.227-232
    • /
    • 1990
  • The effects of alachlor [2-chloro-2', 6' diethyl-N-(methoxymethyl) acetanilide] treatment on nucleic acid, amino acid and protein synthesis were studied. The amide herbicide alachlor blocks the biosynthesis of the amino acids isoleucine, valine and aromatic amino acid in oat root tips. Nucleic acid was inhibited, but was not proportional to reduction in protein synthesis. $1{\times}10^{-4}M$ of alachlor treatment of oat roots inhibited 36% DNA synthesis, but DNA synthesis was not inhibited at $1{\times}10^{-5}M$. RNA synthesis was inhibited by $1{\times}10^{-5}M$ and $1{\times}10^{-4}M$ of alachlor 16 and 27%, respectively, while inhibition of protein synthesis did occur at same concentrations. Inhibition of protein synthesis also did not occur at concentration below $1{\times}10^{-4}M$ alachlor. It suggest that inhibition of protein sythesis caused significantly by alachlor($1{\times}l0^{-3}M$) result from secondary action.

  • PDF

인삼 단백분획물이 일차배양한 계배의 근육세포에 미치는 영향 (Effects of the Protein Fraction of Panax ginseng on Primary Cultured Chicken Skeletal Muscle Cells)

  • 박미정;송진호;이흔파;김영중
    • 생약학회지
    • /
    • 제21권3호
    • /
    • pp.210-216
    • /
    • 1990
  • Effects of the protein fraction of Panax ginseng on chicken embryonic skeletal muscle cells cultured with a decfiient medium were studied. The protein fraction was further fractionated into four groups according to the molecular weight; larger than 10,000 dalton(fraction A), between 5,000 and 10,000 dalton(fraction B), between 1,000 and 5,000 dalton(fraction C), between 500 and 1,000 dalton(fraction D). According to the microscopic observation, all four protein fractions at the concentration of $10{\sim}100{\;}{\mu}g/ml$ showed the tendency to stimulate the growth and differentiation of the muscle cells. The activity of acetylcholinesterase in muscle cells was significantly elevated by the protein fraction A at the concentration of $100{\mu}{\;}g/ml$. Protein fractions B,C and D significantly enhanced the synthesis of RNA in the muscle cells. The synthesis of DNA in muscle cells was significantly enhanced by protein fractions A,B and C.

  • PDF