• Title/Summary/Keyword: DNA Sequencing

Search Result 1,536, Processing Time 0.035 seconds

Cloning and DNA Sequencing for Unstable Minisatellites DNA Regions in E. coli. (대장균 내에서 불안정한 Minisatellite DNA 영역의 클론닝 및 DNA 염기서열 결정)

  • 임선희;김재우;김광섭;정윤희;윤세련;배호정;안태진;선우양일
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.65-72
    • /
    • 2004
  • Instability of some eukaryotic sequence propagated in prokaryotic hosts is a frequently observed phenomenon. It is well documented that long inverted repeats, AT-rich sequences with structures like Z-DNA are extremely unstable in E. coli. These sequences may either be under-represented or even lost when cloned in E. coli. When we analyzed the polymorphic pattern for several tandom repeat (TR) in human SCKI gene, we found some TR regions were frequently deleted from plasmids and had difficult problem for their sequencing. These regions may result in non-clonability of the DNA sequence. Here we have cloned two difficult TR regions under low temperature and made two library for DNA sequencing using a nebulizer or sonicator. This study will help to determine the unstable genomic elements in complex mammalian genome.

SNP-Based Fetal DNA Detection in Maternal Serum Using the HID-Ion AmpliSeqTM Identity Panel

  • Cho, Sohee;Lee, Ji Hyun;Kim, Chong Jai;Kim, Moon Young;Kim, Kun Woo;Hwang, Doyeong;Lee, Soong Deok
    • The Korean Journal of Legal Medicine
    • /
    • v.41 no.2
    • /
    • pp.41-45
    • /
    • 2017
  • Fetal DNA (fDNA) detection in maternal serum is a challenge due to low copy number and the smaller size of fDNA fragments compared to DNA fragments derived from the mother. Massively parallel sequencing (MPS) is a useful technique for fetal genetic analysis that is able to detect and quantify small amounts of DNA. In this study, seven clinical samples of maternal serum potentially containing fDNA were analyzed with a commercial single nucleotide polymorphism (SNP) panel, the HID-Ion $AmpliSeq^{TM}$ Identity Panel, and the results were compared to those from previous studies. Reference profiles for mothers and fetuses were not available, but multiple Y chromosomal SNPs were detected in two samples, indicating that fDNA was present in the serum and thereby validating observations of autosomal SNPs. This suggests that SNP-based MPS can be valuable for fDNA detection, thereby offering an insight into fetal genetic status. This technology could also be used to detect small amounts of DNA in mixed DNA samples for forensic applications.

Identification of parasite DNA in common bile duct stones by PCR and DNA sequencing

  • Jang, Ji-Sun;Kim, Kyung-Ho;Yu, Jae-Ran;Lee, Soo-Ung
    • Parasites, Hosts and Diseases
    • /
    • v.45 no.4
    • /
    • pp.301-306
    • /
    • 2007
  • We attempted to identify parasite DNA in the biliary stones of humans via PCR and DNA sequencing. Genomic DNA was isolated from each of 15 common bile duct (CBD) stones and 5 gallbladder (GB) stones. The patients who had the CBD stones suffered from cholangitis, and the patients with GB stones showed acute cholecystitis, respectively. The 28S and 18S rDNA genes were amplified successfully from 3 and/or 1 common bile duct stone samples, and then cloned and sequenced. The 28S and 18S rDNA sequences were highly conserved among isolates. Identity of the obtained 28S D1 rDNA with that of Clonorchis sinensis was higher than 97.6%, and identity of the 18S rDNA with that of other Ascarididae was 97.9%. Almost no intra-specific variations were detected in the 28S and 18S rDNA with the exception of a few nucleotide variations, i.e., substitution and deletion. These findings suggest that C. sinensis and Ascaris lumbricoides may be related with the biliary stoneformation and development.

New Performance from an Old Member: SNP Assay and de Novo Sequencing Mediated by Exo+ DNA Polymerases

  • Zhang, Jia;Li, Kai
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.269-274
    • /
    • 2004
  • DNA polymerases without the 3' exonuclease function ($exo^-$ pol) have been widely used in sequencing and SNP genotyping. As a major player that expedited the coming of the postgenomic era, $exo^-$ polymerases worked remarkably well in the Human Genome Sequencing Project. However, it has become a challenge for this class of polymerases to efficiently screen the large number of SNPs that are found in the human genome. For more than three decades it has been recognized that polymerase fidelity varied according to the presence of proofreading activity that is mediated by its internal 3' exonuclease. Polymerases with proofreading function are famous for their high fidelity in DNA replication both in vivo and in vitro, but this well-known class of polymerases has been almost completely neglected in genetic analysis in the postgenomic era. We speculate that $exo^+$ polymerases may exhibit higher nucleotide identification ability when compared to $exo^-$ polymerases for an in vitro genetic analysis. With the application of $exo^+$ polymerases in SNP assays, a novel mechanism for the maintenance of DNA replication, the on/off switch, was discovered. Two new SNP assays have been developed to carry out genome-wide genotyping, taking advantage of the enzymatic properties of $exo^+$ polymerases. Furthermore, the on/off switch mechanism embodies a powerful nucleotide identification ability, which can be used to discriminate the bases that are upstream of the 3' terminus, and thus defines a new concept in de novo sequencing technology. Application of $exo^+$ polymerases to genetic analysis, and especially SNP assays, will greatly accelerate the pace to personalized medicine.

Phylogenetic Analysis by RFLP and Sequencing of Mitochondrial DNA in a Korean Population

  • Lee, Jin-Young;Kim, Heui-Soo;Ha, Bae-Jin;Park, Yeong-Hong
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.88-95
    • /
    • 2006
  • Analysis of molecular nature of mitochondrial DNA (mtDNA) could be powerful marker for anthropological studies of modern populations. While population genetic studies on mtDNA have been reported for several ethnic groups, no such study has been documented for the Korean population. We surveyed mtDNA polymorphisms in the HVS I of noncoding D-loop region and its upstream region from 430 unrelated healthy Korean population by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and direct sequencing analysis. PCR product with 2,790 bp spanning the specific mtDNA region (mt13715-16504) was subjected to RFLP analysis using 6 restriction enzyme (Hinf I, Hae III, Alu I, Dde I, Mbo I, Rsa I). On the PAUP analysis of PCR-RFLP results, 38 mtDNA haplotypes (Hap 1-38) were detected in the Korean populations, which were classified into 11 haplogroups (Grp 1-11) of related haplotypes encompassing all 38 haplotypes. In comparison of sequencing data with Anderson's reference sequence, the transition type was more prevalent than the transversion type. Insertions or deletions were not found. In addition, three of the polymorphic sites (A16240C, A16351G, G16384A) in HVS-I region are determined newly. The polymorphic sites were distributed randomly in the region, though the frequency at each site was variable. Thus, this research might be required for the genealogical study of Orientals.

Subcloning of Nodulin 26 Wild Type(S262) and Phosphorylation Site Mutant(S262D) into the Yeast Expression Vector pYES2

  • Cha, Youn-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.1
    • /
    • pp.61-65
    • /
    • 1997
  • Wild type nodulin 26(nod 26) cDNA(S262) and phodphorylation aite mutant(S262D) were constructed by a yeast expression system using pYES2 plasmids(pTES2-D262 and pTES2-S262D) were sc-reened by restriction mapping with BamHI of KpnI. S262 nod 26 contained a sreine residue at position 262 and S262D nod 26 contained the substitution mutation of serine to aspartic acid residue at position 262 were verified by automated floursent DNA sequencing.

  • PDF

Capillary Electrophoresis of Single-stranded DNA

  • Choi, Hyun-Ju;Kim, Yong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.943-947
    • /
    • 2003
  • We have studied the migration behavior of single-stranded DNA using capillary gel electrophoresis under various conditions. It was found that optimum electric fields should be less than 150 V/cm for the good tradeoff between the separation time and the resolution. It seems that the gel matrix with the combination of different polymer average molecular weights is important to extend the maximum readable DNA bases. The total gel concentration less than 3.1% in the mixed gel system showed good separation efficiency up to 600 bases. The best result was obtained with the poy(ethylene)oxide (PEO) gel concentration of 1.2% of Mr 8,000,000 and 1.8% of Mr 600,000. We observed that the capillary length between 50 cm to 100 cm (effective length) should be employed for the optimization between the total DNA migration time and the maximum readable length. A trizma base-boric acid-ethlyenediaminetetraacetic acid (EDTA) (TBE) buffer was commonly used for DNA sequencing, but we found that 3-[tris(hydroxymethyl)methyl amino]-1-propane sulfonic acid (TAPS) buffer worked as well for the single-stranded DNA separation. Especially, TAPS buffer showed a good resolution for very short DNA bases (1 to 30 bases).

A Pattern Matching Extended Compression Algorithm for DNA Sequences

  • Murugan., A;Punitha., K
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.196-202
    • /
    • 2021
  • DNA sequencing provides fundamental data in genomics, bioinformatics, biology and many other research areas. With the emergent evolution in DNA sequencing technology, a massive amount of genomic data is produced every day, mainly DNA sequences, craving for more storage and bandwidth. Unfortunately, managing, analyzing and specifically storing these large amounts of data become a major scientific challenge for bioinformatics. Those large volumes of data also require a fast transmission, effective storage, superior functionality and provision of quick access to any record. Data storage costs have a considerable proportion of total cost in the formation and analysis of DNA sequences. In particular, there is a need of highly control of disk storage capacity of DNA sequences but the standard compression techniques unsuccessful to compress these sequences. Several specialized techniques were introduced for this purpose. Therefore, to overcome all these above challenges, lossless compression techniques have become necessary. In this paper, it is described a new DNA compression mechanism of pattern matching extended Compression algorithm that read the input sequence as segments and find the matching pattern and store it in a permanent or temporary table based on number of bases. The remaining unmatched sequence is been converted into the binary form and then it is been grouped into binary bits i.e. of seven bits and gain these bits are been converted into an ASCII form. Finally, the proposed algorithm dynamically calculates the compression ratio. Thus the results show that pattern matching extended Compression algorithm outperforms cutting-edge compressors and proves its efficiency in terms of compression ratio regardless of the file size of the data.

The comparative study of two extraction methods for ancient DNA: silica suspension method and ultracentrifugal concentrator method (고대 유전자에 대한 두 종류의 DNA 분리 방법의 비교 연구: 실리카 현탁액 방법 및 초원심분리 농축 방법)

  • Lee, Eun-jung;Maixner, Frank;Zink, Albert
    • Analytical Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.65-70
    • /
    • 2018
  • This study compared two methods for preparing ancient DNA (aDNA) for the construction of successful shotgun libraries that may be applied to massive parallel sequencing. For the comparative analysis, the DNA of prehistoric rib samples from Hungary was extracted using either a manually prepared silica suspension or the Amicon Ultracel-15 10K ultracentrifugal device (Millipore). After the extraction of the same amount of bone powder (about 150 mg) from three samples by each method, the amount of extracted double-stranded DNA and the subsequent degree of construction of the shotgun library were analyzed. The Amicon device method was rapid and easier to perform and resulted in an approximately 11-fold higher DNA recovery than that obtained using the silica suspension. The shotgun library constructed using DNA templates prepared by the Amicon device was more successful than that constructed from templates isolated using the silica suspension. The comparative study of these two aDNA extraction methods showed that the Amicon device has the advantages of saving time, process simplicity, and high efficiency.

Validation of Customized Cancer Panel for Detecting Somatic Mutations and Copy Number Alterations

  • Choi, Su-Hye;Jung, Seung-Hyun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.15 no.4
    • /
    • pp.136-141
    • /
    • 2017
  • Accurate detection of genomic alterations, especially druggable hotspot mutations in tumors, has become an essential part of precision medicine. With targeted sequencing, we can obtain deeper coverage of reads and handle data more easily with a relatively lower cost and less time than whole-exome or whole-genome sequencing. Recently, we designed a customized gene panel for targeted sequencing of major solid cancers. In this study, we aimed to validate its performance. The cancer panel targets 95 cancer-related genes. In terms of the limit of detection, more than 86% of target mutations with a mutant allele frequency (MAF) <1% can be identified, and any mutation with >3% MAF can be detected. When we applied this system for the analysis of Acrometrix Oncology Hotspot Control DNA, which contains more than 500 COSMIC mutations across 53 genes, 99% of the expected mutations were robustly detected. We also confirmed the high reproducibility of the detection of mutations in multiple independent analyses. When we explored copy number alterations (CNAs), the expected CNAs were successfully detected, and this result was confirmed by target-specific genomic quantitative polymerase chain reaction. Taken together, these results support the reliability and accuracy of our cancer panel in detecting mutations. This panel could be useful for key mutation profiling research in solid tumors and clinical translation.