• Title/Summary/Keyword: DNA Sequencing

Search Result 1,536, Processing Time 0.038 seconds

The First Acanthamoeba keratitis Case of Non-Contact Lens Wearer with HIV Infection in Thailand

  • Tananuvat, Napaporn;Techajongjintana, Natnaree;Somboon, Pradya;Wannasan, Anchalee
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.5
    • /
    • pp.505-511
    • /
    • 2019
  • Acanthamoeba keratitis (AK) is a rare sight-threatening corneal infection, often reporting from contact lens wearers. An asymptomatic human immunodeficiency virus (HIV)-infected Thai male without history of contact lens use complained foreign body sensation at his left eye during motorbike riding. He had neither specific keratitis symptoms nor common drugs responding, which contributed to delayed diagnosis. By corneal re-scraping, Acanthamoeba-like cysts were detected by calcofluor white staining and agar culture. The etiological agent obtained from the culture was molecularly confirmed by Acanthamoeba spp.-specific PCR, followed by DNA sequencing. The results from BLAST and phylogenetic analysis based on the DNA sequences, revealed that the pathogen was Acanthamoeba T4, the major genotype most frequently reported from clinical isolates. The infection was successfully treated with polyhexamethylene biguanide resulting in corneal scar. This appears the first reported AK case from a non-contact lens wearer with HIV infection in Thailand. Although AK is sporadic in developing countries, a role of free-living Acanthamoeba as an opportunistic pathogen should not be neglected. The report would increase awareness of AK, especially in the case presenting unspecific keratitis symptoms without clinical response to empirical antimicrobial therapy.

2-D Graphical Representation for Characteristic Sequences of DNA and its Application

  • Li, Chun;Hu, Ji
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.292-296
    • /
    • 2006
  • DNA sequencing has resulted in an abundance of data on DNA sequences for various species. Hence, the characterization and comparison of sequences become more important but still difficult tasks. In this paper, we first give a 2-D ladderlike graphical representation for the characteristic sequences of a DNA sequence, and then construct a 3-component vector, in which the normalized ALE-indices extracted from such three 2-D graphs via D/D matrices are individual components, to characterize the DNA sequence. The examination of similarities/dissimilarities among sequences of the $\beta$-globin genes of different species illustrates the utility of the approach.

Detection of Bovine Freemartinism by the Polymerase Chain Reaction (PCR기법에 의한 소 Freemartin의 판정에 관한 연구)

  • 오성종;김태헌;윤두학;전익수;양보석;임경순;박용윤
    • Journal of Embryo Transfer
    • /
    • v.11 no.2
    • /
    • pp.145-150
    • /
    • 1996
  • This study was conducted to detect the Y-specific DNA in the blood of the female calf in bovine heterosexual production. Genomic DNAs of the freemartin were isolated from the blood and amplified with Y-chromosome specific DNA primer(l4lbp). In order to estimate the lower limit for the detection of XY cells, blood from a hull was diluted in cow blood to 0.01%. DNA sequencing on the PCR products was shown the same sequences as Y chromosome DNA of the normal cows. The Y specific DNA hand by PCR was detected all blood of female calf suspected to have bovine freemar tin syndrom and the karyotyping with freemartin blood was identified as XX / XY chimerism. Therefore, the PGR methods used in this study was very useful technique for the detection of freemartin in Ranwoo and Holstein.

  • PDF

RET Proto-Oncogene Mutation in Medullary Thyroid Carcinoma (갑상선 수질암 조직에서 RET 원암유전자의 돌연변이 양상)

  • Chung Woong-Youn;Song Hyeun-Jung;Cho Nam-Hoon;Park Cheong-Soo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.18 no.1
    • /
    • pp.3-10
    • /
    • 2002
  • Background: The molecular pathogenesis of hereditary medullary thyroid carcinoma is well known to be associated with germ-line mutation in the RET proto-oncogene and sporadic medullary thyroid carcinoma has been shown to carry somatic RET mutation especially in exon 13 and 16. The aim of this study is to evaluate the genetic background in the pathogenesis of the sporadic medullary thyroid carcinoma which shows extremely high incidence in Korea. Materials and Methods: Direct DNA sequencing for RET exon 13 and 16, as well as immunohistochemistrical assay for a monoclonal RET antibody were performed from 20 cases of archival tissues of medullary thyroid carcinoma. Results: Monoclonal RET antibody with C-terminal epitope showed comparatively stronger expression in tumor cells than in normal tissues and immunoreactive area in the tumor was $66.0{\pm}40.1%$. Direct sequencing of RET exon 13 revealed 4 cases of mis-sense mutations in Codon 778, Codon 767, and both in Codon 768 and 778. One case showed a silent mutation (ACG-ACT) in RET exon 16 (Codon 926). Conclusions: The strong RET immunoreactivity of medullary thyroid carcinoma may suggest that there could be a genetic alteration in oncoprotein level. RET proto-oncogene mutation may be involved in the evolutional process of medullary thyroid carcinoma in the aspect of molecular basis.

Combining Support Vector Machine Recursive Feature Elimination and Intensity-dependent Normalization for Gene Selection in RNAseq (RNAseq 빅데이터에서 유전자 선택을 위한 밀집도-의존 정규화 기반의 서포트-벡터 머신 병합법)

  • Kim, Chayoung
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.47-53
    • /
    • 2017
  • In past few years, high-throughput sequencing, big-data generation, cloud computing, and computational biology are revolutionary. RNA sequencing is emerging as an attractive alternative to DNA microarrays. And the methods for constructing Gene Regulatory Network (GRN) from RNA-Seq are extremely lacking and urgently required. Because GRN has obtained substantial observation from genomics and bioinformatics, an elementary requirement of the GRN has been to maximize distinguishable genes. Despite of RNA sequencing techniques to generate a big amount of data, there are few computational methods to exploit the huge amount of the big data. Therefore, we have suggested a novel gene selection algorithm combining Support Vector Machines and Intensity-dependent normalization, which uses log differential expression ratio in RNAseq. It is an extended variation of support vector machine recursive feature elimination (SVM-RFE) algorithm. This algorithm accomplishes minimum relevancy with subsets of Big-Data, such as NCBI-GEO. The proposed algorithm was compared to the existing one which uses gene expression profiling DNA microarrays. It finds that the proposed algorithm have provided as convenient and quick method than previous because it uses all functions in R package and have more improvement with regard to the classification accuracy based on gene ontology and time consuming in terms of Big-Data. The comparison was performed based on the number of genes selected in RNAseq Big-Data.

Identification of Genes Expressed during Conidial Germination of the Pepper Anthracnose Pathogen, Colletotrichum acutatum (고추 탄저병균의 포자 발아 단계 발현 유전자 동정)

  • Kim, Jeong-Hwan;Lee, Jong-Hwan;Choi, Woobong
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • Genes expressed during conidial germination of the pepper anthracnose fungus Colletotrichum acutatum were identified by sequencing the 5' end of unidirectional cDNA clones prepared from the conidial germination stage. A total of 983 expressed sequence tags (ESTs) corresponding to 464 genes, 197 contigs and 267 singletons, were generated. The deduced protein sequences from half of the 464 genes showed significant matches (e value less than 10-5) to proteins in public databases. The genes with known homologs were assigned to known functional categories. The most abundantly expressed genes belonged to those encoding the elongation factor, histone protein, ATP synthease, 14-3-3 protein, and clock controlled protein. A number of genes encoding proteins such as the GTP-binding protein, MAP kinase, transaldolase, and ABC transporter were detected. These genes are thought to be involved in the development of fungal cells. A putative pathogenicity function could be assigned for the genes of ATP citrate lyase, CAP20 and manganese-superoxide dismutase.

Type-specific Amplification of 5S rRNA from Panax ginseng Cultivars Using Touchdown (TD) PCR and Direct Sequencing

  • Sun, Hun;Wang, Hong-Tao;Kwon, Woo-Saeng;Kim, Yeon-Ju;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.55-58
    • /
    • 2009
  • Generally, the direct sequencing through PCR is faster, easier, cheaper, and more practical than clone sequencing. Frequently, standard PCR amplification is usually interpreted by mispriming internal or external regions of the target template. Normally, DNA fragments were eluted from the gel using Gel extraction kit and subjected to direct sequencing or cloning sequencing. Cloning sequencing has often troublesome and needs more time to analyze for many samples. Since touchdown (TD) PCR can generate sufficient and highly specific amplification, it reduces unwanted amplicon generation. Accordingly, TD PCR is a good method for direct sequencing due to amplifying wanted fragment. In plants the 5S-rRNA gene is separated by simple spacers. The 5S-rRNA gene sequence is very well-conserved between plant species while the spacer is species-specific. Therefore, the sequence has been used for phylogenetic studies and species identification. But frequent occurrences of spurious bands caused by complex genomes are encountered in the product spectrum of standard PCR amplification. In conclusion, the TD PCR method can be applied easily to amplify main 5S-rRNA and direct sequencing of panax ginseng cultivars.

Construction of Genetic Linkage Map and Identification of Quantitative Trait Loci in Populus davidiana using Genotyping-by-sequencing (Genotyping-by-sequencing 기법을 이용한 사시나무(Populus davidiana) 유전연관지도 작성 및 양적형질 유전자좌 탐색)

  • Suvi Kim;Yang-gil Kim;Dayoung Lee;Hye-jin Lee;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.40-56
    • /
    • 2023
  • Tree species within the Populus genus grow rapidly and have an excellent capacity to absorb carbon, conferring substantial ability to effective purify the environment. Poplar breeding can be achieved rapidly and efficiently if a genetic linkage map is constructed and quantitative trait loci (QTLs) are identified. Here, a high-density genetic linkage map was constructed for the control pollinated progeny using the genotyping-by-sequencing (GBS) technique, which is a next-generation sequencing method. A search was also performed for the genes associated with quantitative traits located in the genetic linkage map by examining the variables of height and diameter at root collar, and resilience to insect damage. The height and diameter at root collar were measured directly, while the ability to recover from insect damage was scored in a 4-year-old breeding population of aspen hybrids (Odae19 × Bonghyeon4 F1) established in the research forest of Seoul National University. After DNA extraction, paternity was confirmed using five microsatellite markers, and only the individuals for which paternity was confirmed were used for the analysis. The DNA was cut using restriction enzymes and the obtained DNA fragments were prepared using a GBS library and sequenced. The analyzed results were sorted using Populus trichocarpa as a reference genome. Overall, 58,040 aligned single-nucleotide polymorphism (SNP) markers were identified, 17,755 of which were used for mapping genetic linkages. The genetic linkage map was divided into 19 linkage groups, with a total length of 2,129.54 cM. The analysis failed to identify any growth-related QTLs, but a gene assumed to be related to recovery from insect damage was identified on linkage group (chromosome) 4 through genome-wide association study.

Recent next-generation sequencing and bioinformatic analysis methods for food microbiome research (식품 미생물 균총 연구를 위한 최신 마이크로바이옴 분석 기술)

  • Kwon, Joon-Gi;Kim, Seon-Kyun;Lee, Ju-Hoon
    • Food Science and Industry
    • /
    • v.52 no.3
    • /
    • pp.220-228
    • /
    • 2019
  • Rapid development of next-generation sequencing (NGS) technology is available to study microbes in genomic level. This NGS has been widely used in DNA/RNA sequencing for genome sequencing, metagenomics, and transcriptomics. The food microbiology area could be categorized into three groups. Food microbes including probiotics and food-borne pathogens are studied in genomic level using NGS for microbial genomics. While food fermentation or food spoilage are more complicated, their genomic study needs to be done with metagenomics using NGS for compositional analysis. Furthermore, because microbial response in food environments are also important to understand their roles in food fermentation or spoilage, pattern analysis of RNA expression in the specific food microbe is conducted using RNA-Seq. These microbial genomics, metagenomics, and transcriptomics for food fermentation and spoilage would extend our knowledge on effective utilization of fermenting bacteria for health promotion as well as efficient control of food-borne pathogens for food safety.

Comparative analysis of HiSeq3000 and BGISEQ-500 sequencing platform with shotgun metagenomic sequencing data

  • Animesh Kumar;Espen M. Robertsen;Nils P. Willassen;Juan Fu;Erik Hjerde
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.49.1-49.11
    • /
    • 2023
  • Recent advances in sequencing technologies and platforms have enabled to generate metagenomics sequences using different sequencing platforms. In this study, we analyzed and compared shotgun metagenomic sequences generated by HiSeq3000 and BGISEQ-500 platforms from 12 sediment samples collected across the Norwegian coast. Metagenomics DNA sequences were normalized to an equal number of bases for both platforms and further evaluated by using different taxonomic classifiers, reference databases, and assemblers. Normalized BGISEQ-500 sequences retained more reads and base counts after preprocessing, while a slightly higher fraction of HiSeq3000 sequences were taxonomically classified. Kaiju classified a higher percentage of reads relative to Kraken2 for both platforms, and comparison of reference database for taxonomic classification showed that MAR database outperformed RefSeq. Assembly using MEGAHIT produced longer assemblies and higher total contigs count in majority of HiSeq3000 samples than using metaSPAdes, but the assembly statistics notably improved with unprocessed or normalized reads. Our results indicate that both platforms perform comparably in terms of the percentage of taxonomically classified reads and assembled contig statistics for metagenomics samples. This study provides valuable insights for researchers in selecting an appropriate sequencing platform and bioinformatics pipeline for their metagenomics studies.