• Title/Summary/Keyword: DNA 염기서열분석기기

Search Result 2, Processing Time 0.014 seconds

Optimization of DNA sequencing with plasmid DNA templates using the DNA sequencer (Plasmid DNA template를 이용한 DNA 염기서열 분석기기의 최적 조건 확립)

  • Lee, Jae-Bong;Kim, Jae-Hwan;Seo, Bo-Young;Lee, Kyeong-Tae;Park, Eung-Woo;Yoo, Chae-Kyoung;Lim, Hyun-Tae;Jeon, Jin-Tae
    • Journal of agriculture & life science
    • /
    • v.43 no.2
    • /
    • pp.31-38
    • /
    • 2009
  • The DNA sequencer is known to be more sensitive for the quality of template DNA, method of purification followed by sequencing reaction, and gel concentration. Therefore, we investigated optimal conditions for template preparation, purification, sequencing reaction, gel concentration, and injection medium. For plasmid prepara- tion, using chloroform instead of phenol improved the average read length from 532 bp to 684 bp. The addition of 2.5% DMSO sequencing PCR reaction resulted in 200 bp longer sequences. Purification using 50 mM EDTA and 0.6 M Sodium acetate(pH 8.0) presented 20 bp longer sequences than that using 50 mM EDTA(pH 8.0) and 0.6 M sodium acetate(pH 5.2). The injection for sequencing analysis using ABI formamide presented 90 bp longer sequences than that of using formamide deionized by resin. Moreover, there were 150 bp more readable sequences in 3.6% PAGE gel than in 4%. Consequently, it was concluded that an average of 700 bp per reaction with 85% accuracy can be obtained by the following optimal conditions: template preparation using chloroform, 2.5% DMSO, 50 mM EDTA and 0.6 M sodium acetate(pH 8.0), ABI formamide and 3.6% gel concentration.

Development of HLA-A, -B and -DR Typing Method Using Next-Generation Sequencing (차세대염기서열분석법을 이용한 HLA-A, -B 그리고 -DR 형별 분석법 개발)

  • Seo, Dong Hee;Lee, Jeong Min;Park, Mi Ok;Lee, Hyun Ju;Moon, Seo Yoon;Oh, Mijin;Kim, So Young;Lee, Sang-Heon;Hyeong, Ki-Eun;Hu, Hae-Jin;Cho, Dae-Yeon
    • The Korean Journal of Blood Transfusion
    • /
    • v.29 no.3
    • /
    • pp.310-319
    • /
    • 2018
  • Background: Research on next-generation sequencing (NGS)-based HLA typing is active. To resolve the phase ambiguity and long turn-around-time of conventional high resolution HLA typing, this study developed a NGS-based high resolution HLA typing method that can handle large-scale samples within an efficient testing time. Methods: For HLA NGS, the condition of nucleic acid extraction, library construction, PCR mechanism, and HLA typing with bioinformatics were developed. To confirm the accuracy of the NGS-based HLA typing method, the results of 192 samples HLA typed by SSOP and 28 samples typed by SBT compared to NGS-based HLA-A, -B and -DR typing. Results: DNA library construction through two-step PCR, NGS sequencing with MiSeq (Illumina Inc., San Diego, USA), and the data analysis platform were established. NGS-based HLA typing results were compatible with known HLA types from 220 blood samples. Conclusion: The NSG-based HLA typing method could handle large volume samples with high-throughput. Therefore, it would be useful for HLA typing of bone marrow donation volunteers.