• Title/Summary/Keyword: DNA 시퀀스 데이타베이스

Search Result 4, Processing Time 0.02 seconds

Efficient Indexing for Large DNA Sequence Databases (대용량 DNA 시퀀스 데이타베이스를 위한 효율적인 인덱싱)

  • Won Jung-Im;Yoon Jee-Hee;Park Sang-Hyun;Kim Sang-Wook
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.650-663
    • /
    • 2004
  • In molecular biology, DNA sequence searching is one of the most crucial operations. Since DNA databases contain a huge volume of sequences, a fast indexing mechanism is essential for efficient processing of DNA sequence searches. In this paper, we first identify the problems of the suffix tree in aspects of the storage overhead, search performance, and integration with DBMSs. Then, we propose a new index structure that solves those problems. The proposed index consists of two parts: the primary part represents the trie as bit strings without any pointers, and the secondary part helps fast accesses of the leaf nodes of the trio that need to be accessed for post processing. We also suggest an efficient algorithm based on that index for DNA sequence searching. To verify the superiority of the proposed approach, we conducted a performance evaluation via a series of experiments. The results revealed that the proposed approach, which requires smaller storage space, achieves 13 to 29 times performance improvement over the suffix tree.

A Practical Approximate Sub-Sequence Search Method for DNA Sequence Databases (DNA 시퀀스 데이타베이스를 위한 실용적인 유사 서브 시퀀스 검색 기법)

  • Won, Jung-Im;Hong, Sang-Kyoon;Yoon, Jee-Hee;Park, Sang-Hyun;Kim, Sang-Wook
    • Journal of KIISE:Databases
    • /
    • v.34 no.2
    • /
    • pp.119-132
    • /
    • 2007
  • In molecular biology, approximate subsequence search is one of the most important operations. In this paper, we propose an accurate and efficient method for approximate subsequence search in large DNA databases. The proposed method basically adopts a binary trie as its primary structure and stores all the window subsequences extracted from a DNA sequence. For approximate subsequence search, it traverses the binary trie in a breadth-first fashion and retrieves all the matched subsequences from the traversed path within the trie by a dynamic programming technique. However, the proposed method stores only window subsequences of the pre-determined length, and thus suffers from large post-processing time in case of long query sequences. To overcome this problem, we divide a query sequence into shorter pieces, perform searching for those subsequences, and then merge their results. To verify the superiority of the proposed method, we conducted performance evaluation via a series of experiments. The results reveal that the proposed method, which requires smaller storage space, achieves 4 to 17 times improvement in performance over the suffix tree based method. Even when the length of a query sequence is large, our method is more than an order of magnitude faster than the suffix tree based method and the Smith-Waterman algorithm.

A DNA Index Structure using Frequency and Position Information of Genetic Alphabet (염기문자의 빈도와 위치정보를 이용한 DNA 인덱스구조)

  • Kim Woo-Cheol;Park Sang-Hyun;Won Jung-Im;Kim Sang-Wook;Yoon Jee-Hee
    • Journal of KIISE:Databases
    • /
    • v.32 no.3
    • /
    • pp.263-275
    • /
    • 2005
  • In a large DNA database, indexing techniques are widely used for rapid approximate sequence searching. However, most indexing techniques require a space larger than original databases, and also suffer from difficulties in seamless integration with DBMS. In this paper, we suggest a space-efficient and disk-based indexing and query processing algorithm for approximate DNA sequence searching, specially exact match queries, wildcard match queries, and k-mismatch queries. Our indexing method places a sliding window at every possible location of a DNA sequence and extracts its signature by considering the occurrence frequency of each nucleotide. It then stores a set of signatures using a multi-dimensional index, such as R*-tree. Especially, by assigning a weight to each position of a window, it prevents signatures from being concentrated around a few spots in index space. Our query processing algorithm converts a query sequence into a multi-dimensional rectangle and searches the index for the signatures overlapped with the rectangle. The experiments with real biological data sets revealed that the proposed method is at least three times, twice, and several orders of magnitude faster than the suffix-tree-based method in exact match, wildcard match, and k- mismatch, respectively.

A Space Efficient Indexing Technique for DNA Sequences (공간 효율적인 DNA 시퀀스 인덱싱 방안)

  • Song, Hye-Ju;Park, Young-Ho;Loh, Woong-Kee
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.455-465
    • /
    • 2009
  • Suffix trees are widely used in similar sequence matching for DNA. They have several problems such as time consuming, large space usages of disks and memories and data skew, since DNA sequences are very large and do not fit in the main memory. Thus, in the paper, we present a space efficient indexing method called SENoM, allowing us to build trees without merging phases for the partitioned sub trees. The proposed method is constructed in two phases. In the first phase, we partition the suffixes of the input string based on a common variable-length prefix till the number of suffixes is smaller than a threshold. In the second phase, we construct a sub tree based on the disk using the suffix sets, and then write it to the disk. The proposed method, SENoM eliminates complex merging phases. We show experimentally that proposed method is effective as bellows. SENoM reduces the disk usage less than 35% and reduces the memory usage less than 20% compared with TRELLIS algorithm. SENoM is available to query efficiently using the prefix tree even when the length of query sequence is large.