• Title/Summary/Keyword: DMPA

Search Result 56, Processing Time 0.021 seconds

Preparation and Properties of Anionic Water-Dispersed Polyurethane Containing Polypropylene Glycol and Casein

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.778-786
    • /
    • 2017
  • In this study, analyzed the changes occurred after adding casein emulsions to water - dispersed polyurethane using polypropylene glycol (PPG). For this purpose, anionic water - dispersed polyurethane containing PPG, IPDI and DMPA and casein emulsion prepared by dissolving casein in distilled water using ammonia water were prepared. As a result of measuring the alkali resistance by using the prepared resin, there was no change in the physical properties. The tensile strength of the sample having a high casein content was measured to be $2.227kgf/mm^2$. Elongation was measured at 474% for samples containing less casein and The abrasion resistance was measured as 46.090 mg.loss of sample containing much casein as a result of the surface roughness measurement.

Monitoring of Tidal Sand Shoal with a Camera Monitoring System and its Morphologic Change (카메라를 활용한 조석사주 관측시스템 구축 및 지형변화)

  • Lee, Soong-Ji;Lee, Guan-Hong;Kang, Tae-Soon;Kim, Young-Taeg;Kim, Tea-Lim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.326-333
    • /
    • 2015
  • A tidal sandshoal, called 'Puldeung' in the Daeijackdo Marine Protected Area(DMPA), is facing erosion due to sand mining in the nearby coastal region. To monitor the morphologic change and erosion of Puldeung, a camera monitoring system was established at the top of Song-Ee Mountain in Daeijack Island. The system consists of 2 Cannon digital cameras, Eye-fi memory card/Long-Term Evolution wireless network, and solar power supply. The acquired camera images were analyzed to obtain the area of Puldeung by the following methods: geometric correction of image, identification of shoreline, areal measurement of Puldeung and its error estimation. To compare the Puldeung area with previously measured area of 1.79 km2 at tidal height of 137 cm in 2008 and of 1.59 km2 at tidal height of 148 cm in 2010, we selected images with same tidal heights. The Puldeung area was 1.37 and 1.23 km2 at the tidal height of 137 and 148 cm, respectively. The erosion at DMPA is very severe and thus it is imperative to initiate the morphodynamical study on the seasonal variation and long-term evolution of Puldeung as well as the causes and measures of Puldeung erosion.

Fabrication of Silica-Containing Breathable Waterproof Polyurethane Dispersion Film (Silica를 함유하는 Polyurethane dispersion 투습방수 Film의 제조)

  • Shin, Hyun-Ki;Huh, Man-Woo;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.27 no.2
    • /
    • pp.126-131
    • /
    • 2015
  • Silica-polyurethane hybrid breathable films were prepared and their breathabilities were assessed. Appropriately aggregated silica was prepared through sol-gel reaction of water glass and its particle size ranged 360~500nm. The polyurethane dispersion was prepared by the reaction of isophorone diisocyanate(IPDI) as diisocyanate and polytetramethylene glycol(PTMG) and dimethylol propionic acid(DMPA) as polyol, particle size ranging 30~120nm. The reaction between isocyanate and hydroxyl group to form urethane bonding was checked by the intensity of the stretch peak of isocyanate at $2270cm^{-1}$ in the FT-IR. The silica was incorporated into polyurethane dispersion and casted into film. It was shown that the incorporated silica(1~5wt.%) increased water vapour permeability of the films by 30~100%, and decreased the hydrostatic pressure by 10~40%. From the results, it could be concluded that the appropriate hybridization of silica can increase the breathability of polyurethane dispersion film, while minimizing the loss of hydrostatic pressure.

Preparation and Properties of Waterborne Poly(urethane-urea) Ionomers -Effect of the Type of Neutralizing Agent-

  • Yang, Jung-Eun;Lee, Young-Hee;Koo, Young-Seok;Jung, Young-Jin;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.97-102
    • /
    • 2002
  • A series of waterbome poly(urethane-urea) anionomers were prepared from isophorone diisocyanate (IPDI), polycaprolactone diol (PCL), dimethylol propionic acid (DMPA), ethylene diamine (EDA), and triethylamine (TEA), NaOH, or Cu($(COOCH_3)_2$) as neutralizing agent. This study was performed to decide the effect of neutralizing agent type on the particle size viscosity, hydrogen bonding index, adhesive strength, antistaticity, antibacterial and mechanical properties. The particle size of the dispersions decreased in the following order: TEA based samples (T-sample), NaOH based samples (N-sample), and Cu($(COOCH_3)_2$) based sample (C-sample). The viscosity of the dispersions increased in the order of C-sample, N-sample, and T-sample. Metal salt based film samples Of and C-sample) had much higher antistaticity than TEA based sample. By infrared spectroscopy, it was found that the hydrogen bonding index (or fraction) of samples decreased in the order of T-sam-pie, N-sample, and C-sample. The adhesive strength and tensile modulus/strength decreased in the order of T-sample, N-sam-pie, and C-sample. The C-sample had strong antibacterial halo, however, T- and N-samples did not

Preparation and Properties of Waterborne Polyurethanes Based on Ttiblock Glycol $(CL)_{4.5}$-PTMG-$(CL)_{4.5}$ for Water Vapor Permeable Coatings: Effect of Soft Segment Content

  • Kwak, Yong-Sil;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.153-158
    • /
    • 2002
  • A series of waterborne polyurethanes (WBPU) were prepared from 4,4-dicyclohexylmethane diisocyanate ($H_{12}$MDI),2,2-bis(hydroxylmethyl) propionic acid (DMPA), othylenediarnine (EDA), triethylamine (TEA), and triblock glycol [TBG, ($\varepsilon$-caprolactone)$_{4.5}$-poly(tetramethylene ether) glycol (MW= 2000)-($\varepsilon$-caprolactone)$_{4.5}$: $(CL)_{4.5}$-PTMG-$(CL)_{4.5}$, MW=3000] as a soft segment. Two melting peaks of TBG at about 14$^{\circ}C$ and 38$^{\circ}C$ were observed indicating the presence of two different crystalline domains composed of CL and PTMG dominant component. The effect of soft segment content (60-75 wt%) on the colloidal properties of dispersion, and thermal and mechanical properties of WBPU films, the water vapor permeability (WVP) and water resistance (WR) of WBPU-coated Nylon fabrics, and the adhesive strength of WBPU- coated layer and Nylon fabrics was investigated. As soft segment contents increased, the water vapor permeability of WBPU- coated Nylon fabrics increased from 3615 to 4502 g/$m^2$day, however, the water resistances decreased from 1300 to 500 mm$H_2$O.O.

Preparation and Properties of Crosslinkable Waterborne Polyurethanes Containing Aminoplast(I)

  • Kwon Ji-Yun;Kim Han-Do
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.373-382
    • /
    • 2006
  • A series of crosslinkable, waterborne polyurethanes (I-WBPUs) were prepared by in-situ polymerization using isophorone diisocyanate (IPDI)/poly(tetramethylene oxide) glycol (PTMG, $M_n$=2,000)/dimethylol propionic acid (DMPA)/ethylene diamine (EDA)/triethylamine (TEA)/aminoplast[hexakis(methoxymethyl)melamine (HMMM)] as a crosslinking agent. Typical crosslinkable, waterborne polyurethanes (B-WBPUs) blended from WBPU dispersion and aqueous HMMM solution was also prepared to compare with the I-WBPUs. The crosslinking reaction between WBPU and HMMM was verified using FTIR and XPS analysis. The effect of the HMMM contents on the dynamic mechanical thermal, thermal, mechanical, and adhesion properties of the I-WBPU and B-WBPU films were investigated. The storage modulus(E'), glass transition temperatures of the soft segment ($T_{gs}$) and the amorphous regions of higher order ($T_{gh}$), melting temperature ($T_m$), integral procedural decomposition temperature (IPDT), residual weight, $T_{10%}$ and $T_{50%}$ (the temperature where 10 and 50% weight loss occurred), tensile strength, initial modulus, hardness, and adhesive strength of both I-WBPU and B-WBPU systems increased with increasing HMMM content. However, these properties of the I-WBPU system were higher than those of the B-WBPU system at the same HMMM content. These results confirmed the in-situ polymerization used in this study to be a more effective method to improve the properties of the WBPU materials compared to the simple blending process.