• Title/Summary/Keyword: DMM

Search Result 101, Processing Time 0.021 seconds

소형 낚시선박의 선형변화에 따른 횡요감쇠효과와 복원성 평가

  • Jeong, Jae-Hun;Kim, Gwang-Hun;Lee, Seong-Jong;Lee, Seung-Geon;Mun, Byeong-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.284-285
    • /
    • 2012
  • 레저선박 중 하나인 8톤급 낚시선박에 대한 설계에 앞서, 우수한 복원성을 가지기 위해서는 실해역에 가장 적합한 선형의 개발이 중요하다. 특히 선행되어야 할 것은 선박의 운동 중 횡요 운동이 선박의 안전성 및 승선감에 미치는 영향에 대한 평가라 할 수 있다. 본 논문에서는 모형선 시험 중 전통적으로 사용되는 경사시험, 자유 횡요 시험 및 GZ 곡선을 통하여 기존선형과 대상선형에 대한 횡요 감쇠효과 및 복원성 평가를 수행하였다. 그리고 선형개선에 따른 GM계산 및 횡요운동 주기와 복원성 조사를 통해 낚시선박의 안전성과 승객의 승선감에 대한 영향을 조사하였다. 특히 자유횡요시험 시, 비접촉식 6자유도 운동계측기(Rodym DMM)와 무선 경사계를 이용한 계측 두 가지 방법을 함께 수행함으로서 횡요감쇠효과에 대한 신뢰도를 높였고 그 결과 기존 선형보다 대상 선형에 의한 감쇠효과가 더 크게 나타남을 확인할 수 있었다. 따라서 개선된 대상선형의 GZ곡선을 이용하여 설계시 적합한 복원성을 조사하였으며 자유횡요시험을 통하여 횡요주기가 증가함으로서 대상선형의 승선감이 더욱 향상된 것으로 분석되었다.

  • PDF

Analysis of Diesel Combustion Flames with Highly Oxygenated Fuels

  • Kim Bong-Seock;Ogawa Hideyuki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.662-670
    • /
    • 2005
  • With highly oxygenated fuels the smoke emissions decreased sharply and linearly with increases in the fuel oxygen content and entirely disappeared at an oxygen content of $38wt-\%$ even at stoichiometric mixture conditions The NOx also decreased monotonically with increases in oxygen content. and thermal efficiency slightly improved because of a reduction in cooling loss and improvement in the degree of constant volume combustion. The mechanisms of the significant reductions in emissions and improvement in engine performance were analyzed with a bottom view type DI diesel engine. Together with direct flame images, flame images were taken through an optical fetter passing only two wavelengths for use in 2-D two-color analysis. The results showed that luminous flame decreased significantly with increases in oxygen content and was not detected for neat dimethoxy methane(DMM). The decrease in flame luminosity with highly oxygenated fuels corresponds with decreases in soot and cooling losses, including those due to heat radiation. The 2-D two-color flame analysis indicated that the high temperature flame and high KL factor areas apparently decreased with increasing fuel oxygen content. These results correspond strongly with decreases in NOx. smoke. and cooling loss with increases in oxygen content.

Process Design of Isothermal Forging for Three-Dimensional Ti-6Al-4V Wing-Shape (Ti-6Al-4V 합금 3D 날개형상의 항온단조 공정설계)

  • Yeom J. T.;Park N. K.;Lee Y. H.;Shin T. J.;Hong S. S.;Shim I. O.;Hwang S. M.;Lee C. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.2 s.74
    • /
    • pp.126-132
    • /
    • 2005
  • The isothermal forging design of a Ti-6Al-4V wing shape was performed by 3D FE simulation. The design focuses on near-net shape forming by the single stage. The process variables such as the die design, pre-form shape and size, ram speed and forging temperature were investigated. The main design priorities were to minimize forging loads and to distribute strain uniformly in a given forging condition. The FE simulation results for the final process design were compared with the isothermal forging tests. The instability of deformation was evaluated using a processing map based on the dynamic materials model(DMM), including flow stability criteria. Finally, a modified process design for producing a uniform Ti-6Al-4V wing product without forming defects was suggested.

Hot Forging Design of Titanium Compressor Wheel for a Marine Turbocharger (선박용 과급기 타이타늄합금 압축기휠의 열간단조 공정설계)

  • Yeom, J.T.;Na, Y.S.;Lim, J.S.;Kim, J.H.;Hong, J.K.;Park, N.K.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.354-360
    • /
    • 2009
  • Hot-forging process and die design were made for a large-scale compressor wheel of Ti-6Al-4V alloy by using the results of 2-D FEM simulation. The design integrated the geometry-controlled approach and the processing contour map based on the dynamic materials model and the flow stability criteria. In order to obtain the processing contour map of Ti-6Al-4V alloy, compression tests were carried out in the temperature range of $915^{\circ}C$ to $1015^{\circ}C$ and the strain rate range of $10^{-3}s^{-1}$ to $10s^{-1}$. In the die design of the compressor wheel using the rigid-plastic FEM simulation, forging dimensional accuracy, the capacity of the forging machine and defect-free forging were considered as main design factors. The microstructure of hot forged wheel using the designed die showed a typical alpha-beta structure without forging-defects.

A Study on the Superplasticity of Zn-Al Alloy using Dynamic Materials Model (동적재료모델을 이용한 Zn-Al 합금의 초소성 변형거동 연구)

  • Jung, J.Y.;Ha, T.K.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.317-322
    • /
    • 2009
  • Superplastic deformation behavior of a Zn-0.3 wt.% Al was investigated. Grain sizes of $1{\mu}m$ and $10{\mu}m$ were obtained by a thermomechanical treatment. A series of load relaxation and tensile tests were conducted at various temperatures ranging from RT ($24^{\circ}C$) to $200^{\circ}C$. A large elongation of 1400% was obtained at room temperature in the specimens with the grain size of $1{\mu}m$. In the case of specimens with the grain size of $10{\mu}m$, relatively lower elongation at room temperature was obtained and, as the temperature increases above $100^{\circ}C$, a high elongation of about 400 % has been obtained at $200^{\circ}C$ under the strain rate of $2{\times}10^{-4}/s$. Dynamic materials model (DMM) has been employed to explain the contribution from GBS of Zn-Al alloy. Power dissipation efficiency for GBS was evaluated as above 0.4 and found to be very close to the unity as strain rate decreased and temperature increased, suggesting that GBS could be regarded as Newtonian viscous flow.

Investigation of Forming Stabilities Criteria in Hot Backward Extrusion of Ti-6Al-4V (Ti-6Al-4V합금의 열간 후방압출에 대한 성형 안정성 평가모델의 고찰)

  • Yeom Jong-Taek;Park Nho-Kwang;Lee You-Hwan;Shin Tae-Jin;Hwang Sang-Mu;Hong Sung-Suk;Shim In-Ok;Lee Chong-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.84-92
    • /
    • 2004
  • The metal forming behavior of Ti-6Al-4V tube during hot backward extrusion was investigated with various forming stabilities or instabilities criteria. that is, Ziegler's instability criterion, dynamic materials model(DMM) stability criteria and Rao's instability criterion. These approaches also were coupled to the internal variables generated from FE simulation. In order to validate the reliabilities of three criteria, hot backward extrusions for Ti-6Al-4V tube making were carried out with different backward extrusion designs. The useful model for predicting the forming defects was suggested through the comparison between experimental observations and simulation results.

Silicone Rubber Blended with Polyurethane as the Matrix for Ion-Selective Membrane Electrodes

  • Lee, Hyun Jung;Rho, Kyung Lae;Kim, Chang Yong;Oh, Bong Kyun;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.623-630
    • /
    • 1995
  • Silicone rubber-based sodium-selective membranes are developed for solid-state ion sensors. It was shown that the potetiometric performance of SR-based membranes are greatly dependent on the type of neutral carriers employed; among the three ionophores, N,N,N',N'-tetracyclohexyl-1,2-phenylenedioxydiacetamide (ETH 2120), bis[(12-crown-4)methyl]dodecylmethylmalonate (D12C4DMM) and monensin methyl ester (MME), examined, only ETH 2120 was compatible with the SR-based matrix. Addition of about 20 wt% plasticizer to the SR-based matrix provided the resulting membranes with potentiometric properties essentially equivalent to those of the corresponding PVC-based membranes. Owing to the strong adhesive strength of SR-based membranes, the CWEs coated \vith those membranes exhibited long lifetime with conventional electrode-like performance. Blending of PU into the SR matrix increased the lifetime of CWEs from two weeks to one month.

  • PDF

Investigation of High Temperature Deformation Behavior in Compression and Torsion of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 비틀림 및 압축변형에 따른 고온변형거동 고찰)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Hong, J.K.;Park, N.K.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.435-438
    • /
    • 2008
  • High temperature deformation of Ti-6Al-4V alloy with a lamellar colony microstructure was investigated by hot compression and torsion tests. The torsion and compression tests were carried out under a wide range of temperatures and strain rates with true strain up to 2 and 0.7, respectively. The processing maps were generated on the basis of compression and torsion test data and using the principles of dynamic materials modeling (DMM). The shapes of the strain-stress curves in alpha-beta region and processing maps obtained on the two different tests have been compared with a view to evaluate the effect of the microstructure evolution on the flow softening behavior of Ti-6Al-4V alloy with a lamellar colony microstructure.

  • PDF

Fatigue Crack Closure and Propagation Behavior Under Mixed-Mode Loading Observed by the Direct Measuring Method (직접측정법을 이용한 혼합모드 하중 하에서 피로균열의 닫힘과 전파거동)

  • Song Sam Hong;Seo Ki Jeong;Lee Jeong Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.152-158
    • /
    • 2005
  • The stress conditions acting on the practical structure are complex, and thus most cracks existing in the practical structures are under mixed-mode loading conditions. The effect of shear load component of mixed-mode loading acts more greatly in the stage of crack initiation and initial propagation than crack propagation stage. Hence, research on the behavior in the stage of crack initiation and initial propagation need to be examined in order to evaluate behavior of mixed-mode fatigue cracks. In this study, the crack tip displacement(CTD) was measured by using the direct measuring method(DMM). We examined the behavior at crack tip by determining crack opening load$(P_{op})$. From the test results, the propagation behavior of mixed-mode fatigue cracks was evaluated by considering mixed-mode crack closure. Also, we examined the characteristic of crack propagation under mixed-mode loading with crack propagation direction.

Forging Process Design by High Temperature Deformation Behavior of the 6061 Aluminum Alloy (자동차 휠용 6061 Al합금의 고온변형거동에 따른 단조성형조건 설계)

  • Lee, Dong-Geun;Lee, Ji Hye;Kim, Jeoung Han;Park, Nho Kwang;Lee, Yongtai;Jeong, Heon-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.449-457
    • /
    • 2008
  • Compression deformation behaviors at high temperature as a function of temperature and strain rate were investigated in the 6061 aluminum alloy, which is used for automobile wheel. Compression tests were carried out in the range of temperatures $300{\sim}475^{\circ}C$ and strain rate $10^{-3}{\sim}10^{-1}sec^{-1}$. By analyzing these results, strain rate sensitivity, deformation temperature sensitivity, the efficiency of power dissipation, Ziegler's instability criterion, etc were calculated, which were plastic deformation instability parameters as suggested by Ziegler, Malas, etc. Furthermore, deformation processing map was drawn by introducing dynamic materials model (DMM) and Ziegler's Continuum Criteria. This processing map was evaluated by relating the deformation instability conditions and the real microstructures. As a result, the optimum forging condition for the automobile wheel with the 6061 aluminum alloy was designed at temperature $450^{\circ}C$, strain rate $1.0{\times}10^{-1}sec^{-1}$. It was also confirmed by DEFORM finite element analysis tool with simulation process.