• Title/Summary/Keyword: DME(Dimethyl Ether)

Search Result 157, Processing Time 0.024 seconds

Effect of Etching Treatment of SAPO-34 Catalyst on Dimethyl Ether to Olefins Reaction (DTO 반응에 미치는 SAPO-34 촉매의 식각 처리 효과)

  • Song, Kang;Yoon, Young-Chan;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.20-27
    • /
    • 2021
  • Effects of the etching treatment of SAPO-34 catalyst were investigated to improve the catalytic lifetime in DTO reaction. The aqueous NH3 solution was a more appropriate treatment agent which could control the degree of etching progress, compared to that of using a strong acid (HCl) or alkali (NaOH) solution. Therefore, the effect on characteristics and lifetime of SAPO-34 catalyst was observed using the treatment concentration and time of aqueous NH3 solution as variables. As the treatment concentration or time of aqueous NH3 solution increased, the growth of erosion was proceeded from the center of SAPO-34 crystal plane, and the acid site concentration and strength gradually decreased. Meanwhile, it was found that external surface area and mesopore volume of SAPO-34 catalyst increased at appropriate treatment conditions. When the treatment concentration and time were 0.05 M and 3 h, respectively, the lifetime of the treated SAPO-34 catalyst was the longest, and was significantly enhanced by ca. 36% (based on DME conversion of > 90%) compared to that of using the untreated catalyst. The model for the etching progress of SAPO-34 catalyst in a mild treatment process using aqueous NH3 solution was also proposed.

Electrochemical Detection of Uric Acid using Three Osmium Hydrogels (세개의 오스뮴 고분자를 이용한 요산의 전기화학적 측정방법)

  • Jeon, Won-Yong;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.2
    • /
    • pp.29-38
    • /
    • 2016
  • Screen printed carbon electrodes (SPCEs) with immobilized osmium-based hydrogel redox polymer, uricase and PEGDGE can be used to apply uric acid electrochemical detecting. The osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium compounds. The synthesized poly-osmium hydrogel complexes are described as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dmo-bpy)_2Cl]^{+/2+}$. The different concentrations of uric acid were measured by cyclic voltammetry technique using enzyme-immobilized SPCEs. The prepared SPCEs using PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$ showed no interference from common physiologic interferents such as ascorbic acid (AA) or glucose. The resulting electrical currents at 0.33 V vs. Ag/AgCl displayed a good linear response with uric acid concentrations from 1.0 to 5.0 mM. Therefore, this approach allowed the development of a simple, point of care in the medical field, disposable electrochemical uric acid biosensor.

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.

Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics (화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.449-456
    • /
    • 2010
  • The HCCI engine is a prospective internal combustion engine with which high diesel-like efficiencies and very low NOx and particulate emissions can be achieved. However, several technical issues must be resolved before HCCI engines can be used for different applications. One of the issues concerning the HCCI engine is that the operating range of this engine is limited by the rapid pressure rise caused by the release of excessive heat. This heat release is because of the self-accelerated combustion reaction occurring in the engine and the resulting engine knock in the high-load region. The purpose of this study is to evaluate the role of thermal stratification and fuel stratification in reducing the pressure rise rate in an HCCI engine. The concentrations of NOx and CO in the exhaust gas are also evaluated to confirm combustion completeness and NOx emission. The computation is carried out with the help of a multizone code, by using the information on the detailed chemical kinetics and the effect of thermal and fuel stratification on the onset of ignition and rate of combustion. The engine is fueled with dimethyl ether (DME), which allows heat release to occur in two stages, as opposed to methane, which allows for heat release in a single stage.

Acid Gas Removal Characteristics for Syngas using Fe Oxidization Process (철 산화법을 이용한 합성가스내 산성가스 제거 특성)

  • Lee, Seung-Jong;Hwang, Sang-Yeon;Yoo, Young-Don;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.804-807
    • /
    • 2007
  • The acid gas removal (AGR) system was designed and installed to remove $H_2S$ in coal syngas in the pilot-scale coal gasification system for producing chemicals like Dimethyl Ether(DME). The syngas from the coal gasification at the rate of $100{\sim120$ $Nm^3$/hr included pollutants such as fly ash. $H_2S$, COS, $NH_3$, etc. The designed temperature and pressure of the AGR system are below 50oC and 8 kg/$cm^2$. Fe-chelate was used as an absorbent. $H_2S$ was stably removed below 0.5 ppm in the AGR system when the concentration of $H_2S$ was $150{\sim}450$ ppm. The pH of Fe-chelate solution was also stably maintained between $8{\sim}9$. FeMgO absorbent was also tested to remove $H_2S$ in the lab-scale AGR system and $H_2S$ was also removed below 0.5 ppm in the initial operation.

  • PDF

Hydrogen Production with Space velocity and Steam/CO ratio by Water Gas Shift Reaction of Syngas from waste (폐기물 합성가스의 수성가스 전환 반응을 이용한 공간속도 및 스팀공급비에 따른 수소생산 특성)

  • Kim, Su-Hyun;Gu, Jae-Hoi;Seo, Min-Hye;Yoon, Ki-Su;Kim, Sung-Hyun;Choi, Jong-Hye
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.829-831
    • /
    • 2009
  • 폐기물, 석탄 등 다양한 시료의 가스화 반응을 통해서 발생되는 합성가스는 CO, $H_2$, $CO_2$가 주성분으로 가스엔진, 가스터빈 등의 연료로 사용하여 발전하거나 합성반응을 통해 다양한 화학원료로의 전환이 가능하다. 또한 폐기물, 석탄 등의 다양한 원료의 가스화 반응에 의해 발생한 합성가스로부터 F-T(Fischer-Tropsch) 합성을 통한 인조합성석유, Non F-T 합성을 통한 메탄올, DME(Dimethyl Ether) 등을 제조할 수 있으며, 메탄화 반응을 통해 대체천연가스(SNG, Substitute Natural Gas)로 제조하여 활용하는 방안도 가능하다. 또한 현재 상업용 규모의 수소 제조 방법 중에서 가장 경제적인 방법으로 천연가스를 개질하여 CO, $H_2$가 주성분인 합성가스를 만든 다음 수성가스 전환, PSA(Pressure Swing Adsorption)통해 $CO_2$$H_2$를 분리하여 생산하고 있으나, 천연가스 가격의 상승 및 다양한 시료로부터 향후 경제성 확보가 가능한 수소 제조 방법에 대한 연구가 진행되고 있으며, 석탄 가스화 및 폐기물 가스화를 통해 얻어진 합성가스로부터의 수소 제조 공정이 개발 및 상업화 추진되고 있다. 본 연구에서는 폐기물 가스화를 통해 발생한 합성가스에 대하여 수성가스 전환 반응을 통한 수소 생산 특성 및 수성가스 전환 반응의 공간속도 변화 및 스팀주입량 변화에 따른 반응 특성을 고찰하였다.

  • PDF

Performance of HCFC22 Alternatives R1270, R290, R1270/R290, R290/HFC152a, R1270/R290/RE170 Refrigerants for Air-conditioning and Heat Pump Applications (HCFC22 대체 R290, R1270 및 R1270/R290, R290/HFC152a, R1270/R290/RE170 혼합냉매의 공기조화기와 열펌프 작동범위에서의 성능 평가)

  • Hwang Ji-Hwan;Baek In-Cheol;Jung Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.312-319
    • /
    • 2006
  • In this study, performance of 2 pure hydrocarbons and 7 mixtures was measured in an attempt to substitute HCFC22 used in air-conditioners and heat pumps. The mixtures were composed of R1270 (propylene), R290 (propane), HFC152a, and RE170 (Dimethyl ether, DME). The pure and mixed refrigerants tested have GWPs of $3{\sim}58$ as compared to that of $CO_2$ and the mixtures are all near-azeotropic showing the gliding temperature difference (GTD) of less than $0.6^{\circ}C$. Thermodynamic cycle analysis was carried out to determine the optimum compositions and actual tests were performed in a laboratory heat pump test bench at the evaporation and condensation temperatures of 7.5 and $45.1^{\circ}C$ respectively. Test results show that the coefficient of performance (COP) of these mixtures is up to 5.7% higher than that of HCFC22. While propane showed 11.5% reduction in capacity, most of the fluids tested had the similar capacity to that of HCFC22. Compressor discharge temperatures were reduced by $11{\sim}17^{\circ}C$ with these fluids. There was no problem with mineral oil since the mixtures were mainly composed of hydrocarbons. The amount of charge was reduced up to 55% as compared to HCFC22. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for. residential air-conditioning and heat pumping application.