• Title/Summary/Keyword: DISPLACEMENT

Search Result 12,918, Processing Time 0.03 seconds

Development of a Circular Displacement Meter (원형 변위계 개발)

  • Nakhoon Shim;Ikchang Choi
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.209-215
    • /
    • 2024
  • Generally, a straight displacement meter is used to obtain displacement data to verify the safety of structural members and structures. A straight displacement meter is also used to measure the absolute displacement in research laboratories or safety inspection sites such as bridges and buildings. In this study, for structures in which the displacement sensor could not be fixed at the location where the displacement was to be measured, a circular displacement meter was manufactured to measure the displacement by installing a displacement gauge on the structure itself. In other words, when measuring the horizontal displacement of an upper part, such as a wind tower, a circular displacement meter was installed inside the wind tower to integrate it with the structure, applying the principle that the structure itself can be used as a displacement meter. This circular displacement meter can be installed and used inside a circular structure. Whereas in the case of a telephone pole, it can be installed outside to measure displacement. It can be manufactured in various sizes and used.

Kinematic Analysis of T-Stop Motion by Inline Skate Rolling Speed (인라인 스케이트 활주속력에 따른 T-Stop의 운동학적 분석)

  • Han, Je-Hee;Woo, Byung-Hoon;Kim, Jeong-Goo;Kim, Tae-Whan;Kim, Sung-Sup;Kim, Eui-Hwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.355-364
    • /
    • 2010
  • The purpose of this study was to investigate the kinematical analysis of T-stop motion by inline skate rolling speed. Six subjects were participated in the experiment(age: $35.0{\pm}3.3$ yrs, weight: $72.70{\pm}5.1\;kg$, height: $176.30{\pm}3.1\;cm$, career: $10.00{\pm}2.5$ yrs). The study method adopted 3-dimensional analysis and 2 cameras for filming to analyze the required displacement of center of mass, displacement of right and left hip joint, displacement of right and left knee joint, displacement of trunk tilt using by APAS. The results were as follows; In anterior-posterior displacement of COM, the faster rolling speed, the longer displacement at phase 2. In vertical displacement of COM, the faster rolling speed, the lower displacement. In medial-lateral displacement of COM, there was no significant on rolling speed. In angular displacement of right thigh segment, the faster rolling speed, the bigger displacement in X and Z axis. In angular displacement of left thigh segment, the faster rolling speed, the lower displacement in X axis. In angular displacement of right shank segment, the faster rolling speed, the bigger displacement in Z axis. In angular displacement of left shank segment, the faster rolling speed, the bigger displacement in X and Y axis. In angular displacement of trunk segment, the faster rolling speed, the bigger displacement in Z axis.

Multipoint variable generalized displacement methods: Novel nonlinear solution schemes in structural mechanics

  • Maghami, Ali;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.135-151
    • /
    • 2022
  • The generalized displacement method is a nonlinear solution scheme that follows the equilibrium path of the structure based on the development of the generalized displacement. This method traces the path uniformly with a constant amount of generalized displacement. In this article, we first develop higher-order generalized displacement methods based on multi-point techniques. According to the concept of generalized stiffness, a relation is proposed to adjust the generalized displacement during the path-following. This formulation provides the possibility to change the amount of generalized displacement along the path due to changes in generalized stiffness. We, then, introduce higher-order algorithms of variable generalized displacement method using multi-point methods. Finally, we demonstrate with numerical examples that the presented algorithms, including multi-point generalized displacement methods and multi-point variable generalized displacement methods, are capable of following the equilibrium path. A comparison with the arc length method, generalized displacement method, and multi-point arc-length methods illustrates that the adjustment of generalized displacement significantly reduces the number of steps during the path-following. We also demonstrate that the application of multi-point methods reduces the number of iterations.

A CLINICAL STUDY OF TEMPOROMANDIBULAR JOINT DISORDERS BY USING ARTHROGRAPHY (측두하악관절조영술을 이용한 측두하악관절장애의 임상적 연구)

  • Lee Seung-Hyun;Hwang Eui-Hwan;Lee Sang-Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.1
    • /
    • pp.155-169
    • /
    • 1998
  • The purpose of this study was to prove the relationship between arthrographic and clinical features in temporomandibular joint disorders. In order to carry out this study, ninety-eight arthrographic examinations of temporomandibular joints were performed on eighty-two patients who had the temporomandibular joint disorders. As the arthrographic examination, the cases were classified in three groups, disk displacement with reduction, disk displacement without reduction, within normal limit. After this, the cases were clinically examined, and the results were compared and analyzed in each other group. The obtained results were as follows; 1. As the classification by arthrographic examination, three groups (disc displacement with reduction, disc displacement without reduction, within normal limit) were 41 %, 54%, 5% of total cases in this study, respectively. 2. The third decade(65%) was most frequent in this study. The average age of each group (disc displacement with reduction, disc displacement without reduction, within normal limit) was 24, 28, 21, and disc displacement without reduction group was higher than any other group. 3. In the chief complaint, pain was the most frequent in all three groups. Joint sound was also frequent in disc displacement with reduction group, but in disc displacement without reduction group, limitation of mouth opening was more frequent. 4. Of the various pain, the movement pain was most frequent ( 61 %) in this study. In joint sound, click(63%) was the most frequent in disc displacement with reduction group, but sound history(42%) and no sound (31 %) were more frequent in disc displacement without reduction group. 5. The average maximum opening of each group (disc displacement with reduction, disc displacement without reduction, within normal limit) was 44mm, 32.9mm, 44mm, and disc displacement without reduction group was less than any other group. 6. The masticatory disturbance of each group (disc displacement with reduction, disc displacement without reduction, within normal limit) was 53%, 79%, 40%, and the trauma history of each group was 50%, 40%,60%.

  • PDF

Experimental Verification of Displacement Estimation Algorithm using Velocity Time History (속도시간이력을 이용한 변위 추정 알고리즘에 관한 실험적 검증)

  • Joh, Sung-Ho;Jeon, Jun-Chang;Hwang, Seon Keun;Lee, Hee-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.99-105
    • /
    • 2015
  • In this study, displacement estimation algorithm, which is not requiring an absolute reference point unlike the conventional displacement measurement method, is developed using the geophone. To estimate displacement of the bridge, measured velocity time signal is integrated in the frequency domain. And, the estimated displacement is compared with the measured result using a conventional method. Based on the dynamic field test results, it was found that the estimated displacement by the present algorithm is similar to that of a conventional method. The displacement estimation algorithm proposed in this paper can be effectively applied to measure the displacement of a structure, which is difficult to install a displacement transducer at the fixed point.

Displacement Measurement of Multi-Point Using a Pattern Recognition from Video Signal (영상 신호에서 패턴인식을 이용한 다중 포인트 변위측정)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.675-680
    • /
    • 2008
  • This paper proposes a way to measure the displacement of a multi-point by using a pattern recognition from video signal. Generally in measuring displacement, gab sensor, which is a displacement sensor, is used. However, it is difficult to measure displacement by using a common sensor in places where it is unsuitable to attach a sensor, such as high-temperature areas or radioactive places. In this kind of places, non-contact methods should be used to measure displacement and in this study, images of CCD camera were used. When displacement is measure by using camera images, it is possible to measure displacement with a non-contact method. It is simple to install and multi-point displacement measuring device so that it is advantageous to solve problems of spatial constraints.

  • PDF

A Study of Displacement Amplification Factors Considering Hysteretic Behavior of Structural Systems and Earthquake Characteristics (비탄성 이력응답 및 지진특성을 반영한 변위증폭계수에 관한 연구)

  • Song, Jong-Keol;Kim, Hark-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.777-782
    • /
    • 2007
  • Displacement amplification factor can be used to estimate inelastic displacement demands from elastic displacement demands, The simple formula for displacement amplification factor considering hysteretic behavior of structural system and earthquake characteristics is proposed. And the effects of several parameters such as displacement ductility, strain hardening ratio, period, characteristics of earthquakes and hysteretic models for the displacement amplification factor are evaluated. Accuracy of the proposed formula is evaluated by comparing the displacement amplification factors estimated by existing and proposed formula with those calculated from inelastic time history analysis. The displacement amplification factors by proposed formulas provide a good agreement with those calculated by inelastic time history analysis.

  • PDF

Vision-based remote 6-DOF structural displacement monitoring system using a unique marker

  • Jeon, Haemin;Kim, Youngjae;Lee, Donghwa;Myung, Hyun
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.927-942
    • /
    • 2014
  • Structural displacement is an important indicator for assessing structural safety. For structural displacement monitoring, vision-based displacement measurement systems have been widely developed; however, most systems estimate only 1 or 2-DOF translational displacement. To monitor the 6-DOF structural displacement with high accuracy, a vision-based displacement measurement system with a uniquely designed marker is proposed in this paper. The system is composed of a uniquely designed marker and a camera with a zooming capability, and relative translational and rotational displacement between the marker and the camera is estimated by finding a homography transformation. The novel marker is designed to make the system robust to measurement noise based on a sensitivity analysis of the conventional marker and it has been verified through Monte Carlo simulation results. The performance of the displacement estimation has been verified through two kinds of experimental tests; using a shaking table and a motorized stage. The results show that the system estimates the structural 6-DOF displacement, especially the translational displacement in Z-axis, with high accuracy in real time and is robust to measurement noise.

Evaluation of Inelastic Displacement Ratios for Smooth Hysteretic Behavior Systems (완만한 이력거동 시스템에 대한 비탄성 변위비의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.11-26
    • /
    • 2011
  • The inelastic displacement ratio is defined as the ratio of the peak inelastic displacement to the peak linear elastic displacement. The inelastic displacement ratio allows simple evaluation of the peak inelastic displacement directly from the peak elastic displacement without computation of the inelastic response. Existing research of the inelastic displacement ratio is limited to piece-wise linear systems such as bilinear or stiffness degrading systems. In this paper, the inelastic displacement ratio is investigated for smooth hysteretic behavior systems subjected to near- and far-fault earthquakes. A simple formula of the inelastic displacement ratio is proposed by using a two step procedure of regression analysis.

Probability-based prediction of residual displacement for SDOF using nonlinear static analysis

  • Feng, Zhibin;Gong, Jinxin
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.571-584
    • /
    • 2022
  • The residual displacement ratio (RDRs) response spectra have been generally used as an important means to evaluate the post-earthquake repairability, and the ratios of residual to maximum inelastic displacement are considered to be more appropriate for development of the spectra. This methodology, however, assumes that the expected residual displacement can be computed as the product of the RDRs and maximum inelastic displacement, without considering the correlation between these two variables, which inevitably introduces potential systematic error. For providing an adequately accurate estimate of residual displacement, while accounting for the collapse resistance performance prior to the repairability evaluation, a probability-based procedure to estimate the residual displacement demands using the nonlinear static analysis (NSA) is developed for single-degree-of-freedom (SDOF) systems. To this end, the energy-based equivalent damping ratio used for NSA is revised to obtain the maximum displacement coincident with the nonlinear time history analysis (NTHA) results in the mean sense. Then, the possible systematic error resulted from RDRs spectra methodology is examined based on the NTHA results of SDOF systems. Finally, the statistical relation between the residual displacement and the NSA-based maximum displacement is established. The results indicate that the energy-based equivalent damping ratio will underestimate the damping for short period ranges, and overestimate the damping for longer period ranges. The RDRs spectra methodology generally leads to the results being non-conservative, depending on post-yield stiffness. The proposed approach emphasizes that the repairability evaluation should be based on the premise of no collapse, which matches with the current performance-based seismic assessment procedure.