• Title/Summary/Keyword: DIN:DIP ratio

Search Result 47, Processing Time 0.018 seconds

The Characteristic of Long Term Variation of the Water Quality from Hansan-Geoje bay, Korea (한산거제만 해역의 수질 장기변동 특성)

  • Kwon, Jung-No;Park, Young-Chul;Eom, Ki-Hyuk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.189-201
    • /
    • 2013
  • To study characteristics of the water quality in the Hansan-Geoje bay, we analyzed the long term monitoring data collected at the two sites during the period of 1987~2010. The trophic state of the waters in Hansan-Geoje bay was the mesotrophic level by the classification of Wasmud et al.[2001]. The water nutrients increased steadily from a wet season (Aug.), it reached the maximum concentration peak in a dry season (Nov.), and then decreased steadily to the winter, it reached at the minimum value in May in the next year. The result of factor analysis divided the waters of Hansan-Geoje bay into the five factors (nutrient, season, inflow land water, pollution, internal production) and the factors represented the 76.82% on the status of the waters. According to time series analysis, temperature, DO and bottom DIP were increased, and pH and COD were decreased during the period of 1987~2010. In particular, the fluctuation trend of DIN has been turned from oversupply to shortage by the N/P ratio since before and after 1990's. The water quality of the Hansan-Geoje bay has been recovered except DIP since 1987, despite of its geographical characteristic which is a general semi-closesd bay and a massive aqua-culture ground. To preserve the waters in Hansan-Geoje bay, we need to know on the cause of the increase or accumulation of DIP, and we should continue to study on the interrelation between the aqua-culture and water environment.

Spatiotemporal Variations of Marine Environmental Characteristics in the Middle East Coast of Korea in 2013-2014 (2013-2014년 한국 동해중부연안 해양환경특성의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Kim, Seong-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.274-285
    • /
    • 2016
  • In order to elucidate the spatiotemporal variations of marine environmental parameters, we collected seawater samples in the middle east coast of Korea in 2013-2014. A high temperature and low salinity were distinctively observed in the summer and a low temperature and high salinity pattern in the winter. The temperature of the bottom water was in the range of $2^{\circ}C$ to $7^{\circ}C$, with the temperature being relatively high in the winter, while the salinity was measured to be around 34, with no large differences across the seasons. The dissolved oxygen concentrations were in the range of $7mg\;L^{-1}$ to $12mg\;L^{-1}$, and it was relatively high in May compared to other seasons. The seawater temperature and dissolved oxygen concentration at the surface layer showed a significant negative correlation in the autumn and winter seasons, based on which it is seemed that water temperature is the main factor controlling the amount of dissolved oxygen in the autumn and winter seasons. The dissolved inorganic nitrogen (DIN) and silicate (DSi) increased 11- and 7-fold, respectively, in the winter compared to the summer. The DIN to DIP (dissolved inorganic phosphorus) ratio for the surface seawater was approximately 16, but it was relatively low in the spring season. On the other hand, the DIN to DIP ratio was relatively high in the summer. Based on this, it is seemed that nitrogen and phosphorus were the growth-limiting nutrients for phytoplankton in the spring and summer, respectively. Water quality was I (excellent) ~III (medium) level at the most stations except for some stations (level IV) during the autumn season, having low dissolved oxygen saturations.

A Study on the Eutrophication in the Keum River (금강의 부영양화 현상에 관한 연구)

  • 유선재;김종구;권태연;이석모
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.155-160
    • /
    • 1999
  • To investigate the water quality characteristics and eutrophication of the Keum River, survey were conducted on samples collected from 6 stations in Aug. and Oct. in 1995 and Jan. and May in 1996. The results were summarized as follows ; Concentration of pollutants were in the range of 1.74~6.35(mean 3.81)mg/$\ell$for BOD and 1.98~8.21(5.14)mg/$\ell$for COD and 1.46~51.94(18.52)g/$\ell$for TSS. Water quality were evaluate to be 2~3 grade of station 1 and other stations were 3~4 grade of water quality criteria. The concentration of nutrients were in the range of 55.2~735.3(309.3)$\mu\textrm{g}$-at/$\ell$for Dissolved inorganic nitrogen(DIN) and 0.06~6.03(2.80)$\mu\textrm{g}$-at/$\ell$ for dissolved inorganic phosphate(DIP). Nutrient concentrations in Keum River were usually high and the DIN/DIP ratio ranged from 72 to 2648. The concentration of chlorophyll-a was in the range of 1.1~143.7(44.3)mg/㎥. Chlorophyll-a concentration were high 10mg/㎥ except station 1, which is the value of eutrophication criteria by EPA. Correlations between nutrients and chlorophlly-a were not significant. According to eutrophication evaluation, Keum river was equivalent to the eutrophic state.

  • PDF

Water quality management of Jeiu Harbor using material cycle model(II) - Characteristics of water quality in Jeiu harbor and the estimation of pollutant loadings - (물질순환모델을 이용한 제주항의 수질관리(II) - 제주항의 수질 특성과 오염부하량 산정 -)

  • 조은일;강기봉
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.299-306
    • /
    • 2003
  • The purpose of this study is to investigate the characteristics of water quality in Jeju harbor and to estimate pollutant loadings discharged into Jeju Harbor. To know characteristics of water quality in Jeju harbor, and pollutant loadings of Sanzi river, we have investigated from August, 2000 to May, 2001. The results showed that the concentrations of COD, DIN and DIP were in the range of 1.00∼4.85 mg/L (mean 2.15 mg/L), 2.14∼74.0 $\mu\textrm{g}$-at/L(mean 12.20 $\mu\textrm{g}$-at/L) and 0.52∼4.00 $\mu\textrm{g}$-at/L(mean 1.18 $\mu\textrm{g}$-at/L), respectively. These values were under III class of seawater quality criteria. The ratio of nitrogen to phosphorus was lower than 16 except for Station 1 in Jeju harbor. Therefore, nitrogen was playing an important role in phytoplankton growth as limiting factor in Jeju harbor. The mean values of eutrophication index were exceeding 1, which was the eutrophication criteria. The results of estimating pollutant loadings at Sanzi river are 0.30 ton/day for COD, 300 kg/day for DIN and 18.0 kg/day for DIP, respectively.

Spatiotemporal Variations of Marine Environmental Parameters in the South-western Region of the East Sea (동해남부연안 해양환경특성 시공간적 변화)

  • Won, Jong-Ho;Lee, Young-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.16-28
    • /
    • 2015
  • In order to elucidate the spatiotemporal variations of marine environmental parameters, we collected seawater samples in the south-western region of the East Sea in May, August, and November 2012 and February 2013. The concentrations of dissolved inorganic nutrients (dissolved inorganic nitrogen, phosphorus, and silicate) in surface seawater during the summer season were lower than those during autumn and winter seasons, which the mixed layer is deeper. The low nutrient concentration in spring and summer seasons seems by consumption of dissolved inorganic nutrients by phytoplankon photosynthesis (high chlorophyll a concentration) and the limited supply of dissolved inorganic nutrients from subsurface layer having high nutrients. The low nutrient concentration during spring season seems to be related to the limited supply of dissolved inorganic nutrients from land and subsurface layer because the concentration of chlorophyll a was low. The DIN:DIP ratio was a wide range of average $15.6{\pm}13.6$ in the surface seawater compared to that of average $14.8{\pm}4.2$ in the bottom seawater during sampling periods. The dissolved inorganic nitrogen might act as a limiting factor of the growth of phytoplankton because the DIN:DIP ratio (on average $8.35{\pm}4.67$) was low during the spring season.

The Early-Stage Changes of Water Qualities after the Saemangeum Sea-dike Construction (새만금 방조제 체절 이후 초기의 수질변화에 관한 연구)

  • Yang, Jae-Sam;Jeong, Yong-Hoon;Ji, Kwang-Hee;Kim, Hyun-Soo;Choi, Joeng-Hoon;Kim, Won-Jang
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.199-213
    • /
    • 2008
  • Saemangeum salt-water Lake has been created by the completion of the sea-dike in April 2006. To monitor the water qualities of the lake during the sea-dike construction, salinity, SS, nutrients(DIN, DIP, DISi), and chlorophyll-$\alpha$ was analyzed for the surface water from 1999 to 2007. Due to the dike construction, weaker tidal current and lesser resuspension of bottom sediment resulted in the marked decrease of the concentrations of SS in the lake water. Consequently the clearer lake water has provided better condition for primary production with deeper penetration of sunlight into the water column and sufficient nutrient content in the water. Finally the chlorophyll-$\alpha$ content became approximately double in the concentration after the dike construction. Highly stimulated algal production with the marked decrease of the concentrations of SS was decreased the concentration of DIP in the surface water. On the other hand the concentration of DIN and DISi in surface water was increased after dike construction due to the expansion of the freshwater and the supply from bottom layer. As a result, the lake revealed an extremely high NIP ratio and a DIP-limited ecosystem. The lake has been transformed from a typical coastal ecosystem to a brackish one. Since the dike completion, the lake has shown a similar change pattern to the Geum River estuary. Due to the salt-wedge intrusion of seawater, it is highly probable to expect the formation of low-oxygen zone at the bottom layer near the river-mouth area of the lake during the summer. Therefore we need a continuous sentinel monitoring of bottom water qualities in the near future.

  • PDF

A Study on Changes of the Benthic Environment and Microbial Community in Estuarine Polluted Sediments by Mixing Granulated Coal Ash (석탄회 조립물이 혼합된 하구 오염 퇴적물의 환경 및 미생물 구조 변화에 관한 연구)

  • Kim, Heontae;Woo, Hee-Eun;Kim, Jong-Oh;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.492-499
    • /
    • 2021
  • In this study, the benthic environmental and microbial community structure were investigated by mixing granulated coal ash(GCA) and contaminated estuary sediments. Estuary sediments and GCA were mixed in a ratio of 8:2 and allowed to interact for 1 month, then sediment environmental factors were investigated. The pH of the experimental sediment was mixed increased to 11. The concentration of DIP(Dissolved inorganic phosphorus) in the experimental case decreased by 30 % compared to the control case, and this should be due to formation of calcium phosphate through the chemical reaction of DIP and calcium which diluted from GCA. The high abundance of Gammaproteobacteria seen in the experimental sediment compare to the control can af ect the DIP reduction. The DIN(Dissolved inorganic nitrogen) concentration increased over two times in the experimental case than the control, and this should be due to the high pH condition and release of NH4+-N from the GCA. Microorganisms related to nitrogen circulation were not identified in both the control and experimental cases. It was confirmed that the GCA were effective in reducing the DIP concentration in contaminated estuary sediment, and that benthic microbial communities were shown to influenced the phosphorus circulation.

Physiochemical Characteristics of Coastal Pseudo-Estuarine Environment Formed During the Summer Flood season in the South Coast of Korea (한국 남해 연안역에서 여름 홍수기에 형성된 연안 염하구 환경의 물리 -화학적 특성)

  • 임동일;엄인권;전수경;유재명;정회수
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, we investigated the physiochemical characteristics of temporal estuarine environment formed during the summer flood season (consecutive rainy days with average 50 mm day$^{-1}$ precipitation) in the coastal area of South Sea of Korea. The freshwater from the Seomjin River was characterized by lower temperature, salinity and pH, and high concentrations of COD and nutrients. In the summer flood season, such peculiar Somejin-River freshwater was dispersed southward along the coast of Yeosubando-Dolsando-Geumodo, form-ing temporal estuarine environment (defined as "Coastal Pseudo-Estuary" in this study) throughout the entire study area (as far as 60 km from the Seomjin River mouth). Compared to the winter dry season, the DIN/DIP ratio was almost doubled (16-36) during the summer flood season. This excessive nitrate supply during the summer flood season was probably due to nitrogenous fertilizer. Distribution and behaviors of physiochemical factors in this coastal pseudo-estuarine environment were controlled not only by the runoff of the Seomjun River (physical mixing of river water with seawater) but also by the biogeochemical estuarine processes which are mostly similar to those of the river estuary.r estuary.

Evaluation of Water Quality Variation and Sediment of a Shallow Artificial Lake (Lake llgam) in Located the Metropolitan Area (도심의 얕은 인공호인 일감호의 수질변화특성과 퇴적환경의 평가)

  • Kim, Ho-Sub;Ko, Jae-Man;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.161-171
    • /
    • 2003
  • The present study evaluated water quality variation, limiting nutrient, and sediment of a shallow eutrophic lake (Lake Ilgam) in the metropolitan area from 2000 to 2002. According to annual mean chl.a ($77.2{\pm}36.6\;{\mu}g/l) and TP ($66.6{\pm}20.5\;{\mu}g/l) concentration and trophic state index (>60), Lake llgam was in very eutrophic status. Both inorganic nitrogen ($NH_3-N$ and $NH_3-N$) and phosphorus (SRP) concentrations in the water column increased during winter and spring, but decreased during summer followed by the phytoplankton development. Evidence for phosphorus and nitrogen as being the potential limiting nutrients for phytoplankton growth was supported by the ratio of DIN/DIP (by mass) (${\sim}$835.8), TSI derivations analysis, and algal growth potential bioassay. Based on the results of TSI derivations, strong nutrient limitation by both N and P occurred from September to November when P content in sediment (114.6 mg P/kg) was relatively low compared with the summer. Sediment contained a large amount of nitrogen (TKN: 4,452${\pm}$283.0mg N/kg dry sediment). Phosphorus content in sediment (TP: 313${\pm}$155 mg P/kg) was relatively low with temporal change. P release rate (0.29${\pm}$0.02 mg $m^{-2}$ $day^{-1}$) was high under the aerobic condition at pH 9. These results indicate that the sediment could play an important role as a source of a limiting nutrient, and temporal change of P content in the sediment is closely related with water quality, especially algal biomass change in Lake llgam.

Environmental Feature Causing a Bloom of the Novel Dinoflagellate Heterocapsa circularisquama (Dinophyceae) in Uranouchi Bay, Kochi Prefecture, Japan (일본 Kochi현 Uranouchi만의 와편모조류, Heterocapsa circularisquama (Dinophyceae) 적조발생에 대한 환경 고찰)

  • O, Seok-Jin;Ma,;O,;Mo,;U,
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.281-288
    • /
    • 2003
  • To study the environmental features causing a bloom of the novel dinoflagellate Heterocapsa circularisquama (Dinophyceae), hydrographic and chemical aspects were measured in the Uranouchi Bay, Kochi Prefecture, Japan, from January to December, 1997. The cell density of H. circularisquama increased rapidly in early October, and dropped sharply in mid-October. Growth rate of H, circularisquama during bloom period appeared 1.50 division day$^{-1}$ under high water temperature (25$^{\circ}C$) and salinity (32 psu) conditions. Althought the result from hydrographic aspect indicated good condition for their growth, dissolved inorganic phosphorus (DIP) concentration in surface layer before bloom formation was less than 0.70uM, which is lower than their half saturation constant(Ks). Dissolved inorganic nitrogen(DIN): DIP ratio was > 30, indicating potential P-limitation. However, before bloom formation period of H. circularisquama, DIP concentrations were high in bottom layer (> 4.0 uM). Some studies reported that H. circularisquama had the ability to migrate vertically and to utilize dissolved organic phosphorus (DOP). Thus, DIP in bottom layer might have been utilized by H. circularisquama for their growth.DOP might have weakly affected their growth because of low reactive DOP concentrations owing to low DOP concentration (ca. 0.39 uM). Thus, if nutrient condition of bottom layer in Uranuchi Bay is not improved, the outbreaks of H. circularisquama red tides may became an annual feature.