• Title/Summary/Keyword: DIN/DIP

Search Result 162, Processing Time 0.03 seconds

Bloom of a Filamentous Green Alga Cladophora vadorum (Areschoug) Kützing and Nutrient Levels at Shangrok Beach, Buan, Korea (부안 상록해수욕장의 사상 녹조류 금발대마디말(Cladophora vadorum) 대량발생과 영양염 농도)

  • Ha, Dong Soo;Yoo, Hyun Il;Chang, Soo Jung;Hwang, Eun Kyoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.241-246
    • /
    • 2016
  • A filamentous green alga Cladophora vadorum (Areschoug) Kützing, bloomed at Shangrok Beach, Buan, Republic of Korea, in September 2015. This alga is currently distributed worldwide. Concentrations of total nitrogen (TN), total phosphorus (TP), dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP) were analyzed in the bloom area and compared to those of other areas in the vicinity. DIN and DIP concentrations were similar to those of other areas. However, TN and TP were as much as six and ten times higher than in other areas, respectively. As in other Cladophora species, the bloom of C. vadorum at Shangrok Beach in 2015 appears to have depended on the TP concentration in the seawater. This suggests that blooms in the area can be controlled by reducing TP.

Estimation of Pollutants Residence Time During the Flood and Dry Season in Gwangyang Bay (광양만의 홍수기 및 갈수기의 오염물질 체류시간 산정)

  • Lee, In-Cheol;Kim, Jin-Hyuk;Kong, Hwa-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.20-26
    • /
    • 2008
  • In this paper, in order to set up the management system of water quality environment in Gwangyang Bay, the cluster analysis of water quality environment, the estimation of inflowing pollutant loads and residence time of pollutants in this bay was carried out. The Gwangyang Bay was divided into eight sea areas by cluster analysis and spatio-temporal change of water quality. The river discharges in the Bay were calculated about $11,681{\times}103m^3/day$ from the numerical simulation by Tank model. In addition, inflowing pollutant loads of COD, SS, TN, TP, DIN and DIP in Gwangyang Bay were estimated at 398 ton-COD/day, 2,846 ton-SS/day, 195 ton-TN/day, 5 ton-TP/day, 126 ton-DIN/day and 3 ton-DIP/day, respectively. Moreover, residence times of COD, TN and TP in the Bay was estimated at 6 days-COD, 20 days-TN and 195 days-TP, respectively in the dry season, and 3 days-COD, 6 days-TN and 21 days- TP, respectively, in the flood season. The central part of Gwangyang Bay (Region IV) has the longest residence time of overall pollutants.

Water quality management of Jeiu Harbor using material cycle model(II) - Characteristics of water quality in Jeiu harbor and the estimation of pollutant loadings - (물질순환모델을 이용한 제주항의 수질관리(II) - 제주항의 수질 특성과 오염부하량 산정 -)

  • 조은일;강기봉
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.299-306
    • /
    • 2003
  • The purpose of this study is to investigate the characteristics of water quality in Jeju harbor and to estimate pollutant loadings discharged into Jeju Harbor. To know characteristics of water quality in Jeju harbor, and pollutant loadings of Sanzi river, we have investigated from August, 2000 to May, 2001. The results showed that the concentrations of COD, DIN and DIP were in the range of 1.00∼4.85 mg/L (mean 2.15 mg/L), 2.14∼74.0 $\mu\textrm{g}$-at/L(mean 12.20 $\mu\textrm{g}$-at/L) and 0.52∼4.00 $\mu\textrm{g}$-at/L(mean 1.18 $\mu\textrm{g}$-at/L), respectively. These values were under III class of seawater quality criteria. The ratio of nitrogen to phosphorus was lower than 16 except for Station 1 in Jeju harbor. Therefore, nitrogen was playing an important role in phytoplankton growth as limiting factor in Jeju harbor. The mean values of eutrophication index were exceeding 1, which was the eutrophication criteria. The results of estimating pollutant loadings at Sanzi river are 0.30 ton/day for COD, 300 kg/day for DIN and 18.0 kg/day for DIP, respectively.

A Numerical Prediction for Water Quality at the Developing Region of Deep Sea Water in the East Sea Using Ecological Model (생태계모델을 이용한 동해 심층수 개발해역의 수질환경 변화예측)

  • Lee, In-Cheol;Yoon, Seok-Jin;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.34-41
    • /
    • 2008
  • As a basic study for developing a forecasting/estimating system that predicts water quality changes when Deep Sea Water (DSW) drains to the ocean after using it, this study was carried out as follows: 1) numerical simulation of the present state at DSW developing region in the East sea using SWEM, 2) numerical prediction of water quality changes by effluent DSW, 3) analysis of influence degree 'With defined DEI (DSW effect index) at F station. On the whole, when DSW drained to the ocean, Chl-a, COD and water-temperature were decreased and DIN, DIP and DO were increased by effluent DSW, and Salinity was steady. According to analysis of influence degree, the influence degree of DIN was the highest and it was high in order of Chl-a, COD, Water-temperature, DO, DIP and Salinity. The influence degree classified by DSW effluent position was predicted that suiface outflow was lower than bottom outflow. Ad When DSW discharge increased 10 times, the influence degree increased about $5{\sim}14$ times.

Spatiotemporal Variations of Marine Environmental Characteristics in the Middle East Coast of Korea in 2013-2014 (2013-2014년 한국 동해중부연안 해양환경특성의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Kim, Seong-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.274-285
    • /
    • 2016
  • In order to elucidate the spatiotemporal variations of marine environmental parameters, we collected seawater samples in the middle east coast of Korea in 2013-2014. A high temperature and low salinity were distinctively observed in the summer and a low temperature and high salinity pattern in the winter. The temperature of the bottom water was in the range of $2^{\circ}C$ to $7^{\circ}C$, with the temperature being relatively high in the winter, while the salinity was measured to be around 34, with no large differences across the seasons. The dissolved oxygen concentrations were in the range of $7mg\;L^{-1}$ to $12mg\;L^{-1}$, and it was relatively high in May compared to other seasons. The seawater temperature and dissolved oxygen concentration at the surface layer showed a significant negative correlation in the autumn and winter seasons, based on which it is seemed that water temperature is the main factor controlling the amount of dissolved oxygen in the autumn and winter seasons. The dissolved inorganic nitrogen (DIN) and silicate (DSi) increased 11- and 7-fold, respectively, in the winter compared to the summer. The DIN to DIP (dissolved inorganic phosphorus) ratio for the surface seawater was approximately 16, but it was relatively low in the spring season. On the other hand, the DIN to DIP ratio was relatively high in the summer. Based on this, it is seemed that nitrogen and phosphorus were the growth-limiting nutrients for phytoplankton in the spring and summer, respectively. Water quality was I (excellent) ~III (medium) level at the most stations except for some stations (level IV) during the autumn season, having low dissolved oxygen saturations.

Water Quality Simulation of the Reservoir Using Ecological Model

  • Kim, Dong-Myung;Suk, Ji-Won;Kim, Sun-Young;Shin, Sang-Ik;Roh, Kyong-Joon
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1755-1762
    • /
    • 2014
  • Water quality of the Koejong-reservoir was estimated by using the ecological model to evaluate the effects of industrial sewage discharge. State variables consist of POC, DOC, phytoplankton, DIP, DIN, DO and COD. Initial conditions for the compartment are applied to the model based on the observed results. The reproducibility was found to be satisfactory with the relative error ranging between the calculated value and the observed value. Water quality simulation was conducted by applying additional industrial sewage discharge into the Koejong-reservoir. The concentrations of COD, Chl.a, DIP and COD showed fluctuations of a narrow range. The increment percentages of Chl.a, COD and DIP were 26.6%, 20.2% and 18.2%, respectively. In the case of DO, the concentration decreased 4.8%.

The Early-Stage Changes of Water Qualities after the Saemangeum Sea-dike Construction (새만금 방조제 체절 이후 초기의 수질변화에 관한 연구)

  • Yang, Jae-Sam;Jeong, Yong-Hoon;Ji, Kwang-Hee;Kim, Hyun-Soo;Choi, Joeng-Hoon;Kim, Won-Jang
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.199-213
    • /
    • 2008
  • Saemangeum salt-water Lake has been created by the completion of the sea-dike in April 2006. To monitor the water qualities of the lake during the sea-dike construction, salinity, SS, nutrients(DIN, DIP, DISi), and chlorophyll-$\alpha$ was analyzed for the surface water from 1999 to 2007. Due to the dike construction, weaker tidal current and lesser resuspension of bottom sediment resulted in the marked decrease of the concentrations of SS in the lake water. Consequently the clearer lake water has provided better condition for primary production with deeper penetration of sunlight into the water column and sufficient nutrient content in the water. Finally the chlorophyll-$\alpha$ content became approximately double in the concentration after the dike construction. Highly stimulated algal production with the marked decrease of the concentrations of SS was decreased the concentration of DIP in the surface water. On the other hand the concentration of DIN and DISi in surface water was increased after dike construction due to the expansion of the freshwater and the supply from bottom layer. As a result, the lake revealed an extremely high NIP ratio and a DIP-limited ecosystem. The lake has been transformed from a typical coastal ecosystem to a brackish one. Since the dike completion, the lake has shown a similar change pattern to the Geum River estuary. Due to the salt-wedge intrusion of seawater, it is highly probable to expect the formation of low-oxygen zone at the bottom layer near the river-mouth area of the lake during the summer. Therefore we need a continuous sentinel monitoring of bottom water qualities in the near future.

  • PDF

A Study on Changes of the Benthic Environment and Microbial Community in Estuarine Polluted Sediments by Mixing Granulated Coal Ash (석탄회 조립물이 혼합된 하구 오염 퇴적물의 환경 및 미생물 구조 변화에 관한 연구)

  • Kim, Heontae;Woo, Hee-Eun;Kim, Jong-Oh;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.492-499
    • /
    • 2021
  • In this study, the benthic environmental and microbial community structure were investigated by mixing granulated coal ash(GCA) and contaminated estuary sediments. Estuary sediments and GCA were mixed in a ratio of 8:2 and allowed to interact for 1 month, then sediment environmental factors were investigated. The pH of the experimental sediment was mixed increased to 11. The concentration of DIP(Dissolved inorganic phosphorus) in the experimental case decreased by 30 % compared to the control case, and this should be due to formation of calcium phosphate through the chemical reaction of DIP and calcium which diluted from GCA. The high abundance of Gammaproteobacteria seen in the experimental sediment compare to the control can af ect the DIP reduction. The DIN(Dissolved inorganic nitrogen) concentration increased over two times in the experimental case than the control, and this should be due to the high pH condition and release of NH4+-N from the GCA. Microorganisms related to nitrogen circulation were not identified in both the control and experimental cases. It was confirmed that the GCA were effective in reducing the DIP concentration in contaminated estuary sediment, and that benthic microbial communities were shown to influenced the phosphorus circulation.

Characteristics of Water Quality and factor Analysis on the Variations of Water Quality in Coastal Sea around the Keum River Estuary in Summer (하계 금강하구 주변해역의 수질특성과 수질변동 요인분석)

  • Kwon Jung-No;Kim Jong-Gu;You Sun-Jae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.3-22
    • /
    • 2000
  • To know characteristics of water quality in coastal sea around the Keum river estuary in summer, we studied the water quality of surface, middle and bottom level during Jun e~september, 1998. The mean concentrations of COD, DIN, DIP & chlorophyll-a were 1.36mg/L, 28.60㎍-at/L, 0.48㎍-at/L and 4.14㎍/L, respectively, which were over eutrophication criteria in sea water. After the Keum river dyke was constructed, seasonal freshwater discharge was largely changed. About 80% of total annual freshwater discharge was concentrated in summer as rainy season from July to September. The correlation coefficient of DIN versus salinity was shown to be high, and thus the concentration of DIN was closely related to freshwater discharge. Maximum Chlorophyll-a concentration was occurred in September, due to increased DIP concentration, high water temperature and low salinity after heavy rainfall in August. The results of Principal Component Analysis showed that the first factor represented a series of eutrophication factors, the second factor w3s a valiance of seasonal fluctuation, and the third was a variance of progress of mass change.

  • PDF

A Study on the Status of Marine Environment Management of Sea Port Cities - Focused on Busan Metropolitan City and Incheon metropolitan city - (해항도시의 해양환경 관리실태 분석 - 부산광역시와 인천광역시를 중심으로 -)

  • Kim, Sang-Goo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.259-263
    • /
    • 2011
  • This study explores ways to improve the actual conditions of ocean environment by conducting a comparative study on the current sea-water quality of Busan Metropolitan City and Incheon Metropolitan City that are representative sea port cities in Korea. The indices used to evaluate the sea-water quality include water temperature, salt content, PH, DO, COD, DIN, T-N, DIP, T-P, Sio2-Si, floating materials, and Chi-a. The findings of the analysis can be summarized as follows: First, ocean environmental states of Busan Metropolitan City and Incheon Metropolitan City are getting increasingly worse between the year of 2000 and 2003. Second, T-N, DIP and T-P have been main contributors in worsening ocean environmental states of Busan Metropolitan City and Incheon Metropolitan City.