• Title/Summary/Keyword: DIN/DIP

Search Result 162, Processing Time 0.021 seconds

A Study on the Influence of Water Quality on the Upper Stream of Hap-Chun Lake (합천호 상류수계의 수질인자간 상관관계에 관한 고찰)

  • Park, Hyun-Geoun;Cha, Eun-Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • In this study, we have investigated the water quality and flow rate at the 3 sites of main stream and 11 sites of the branch stream of Hwang River from January, 2007 to 2010, and analyzed the effects on Hwang River with the purpose of using the data for as the fundamental information for water quality improvement and water resource management in the water system of Hap-Cheon Lake Upper Stream. The flow rate at 3 sites of the main stream and 11 sites of the branch stream increased during the rainy season between June and September, and continuously decreased during the dry season starting from autumn to winter. The results of correlation analysis with Pearson correlation coefficient showed that $BOD_5$ and $COD_{Mn}$, $BOD_5$ and T-P, and $COD_{Mn}$ and TSS at the 3 sites of the main stream had high correlation with each other. We have also analyzed the correlation between Chl-a and major factors at the 3 sites of the main stream. Chl-a and the water temperature Negative correlation coefficient and that of Chl-a and $BOD_5$, $COD_{Mn}$ Positive correlation coefficient showed. The N/P ratio at all the 3 sites of the main stream was higher than 16 by DIN/DIP and T-N/T-P, indicating that phosphorus is acting as the limited nutrient.

Removal Efficiency of Cochiodinium polykrikoides by Yellow Loess (황토의 유해성 적조생물 Cochiodinium종의 제거효과)

  • CHOI Hee Gu;KIM Pyoung Soong;LEE Won Chan;YUN Seong Jong;KIM Hak Gyoon;LEE Hung Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.109-113
    • /
    • 1998
  • The clay and yellow loess have capability to adsorb and precipitate particles. The removal efficiencyes of those flocculents on the dinoflagellate, Cochlodinium polykrikoides, have been studied in laboratory and in field near Tongyong fish farm in September, 1996. The removal efficiencyes in the laboratory experiment was $43\%$ for $2\;g/{\ell}$, $64\%$ for $6g/{\ell}$ and $88\%$ for $10\;g/{\ell}$ in one hour after dispersion. No big difference of removal efficiency was found between the raw and the acid-activated loess. In the field survey, the removal rates ranged from 72 to $80\%$ in 30 min after the dispersion. The effect of loess scattering on water quality was estimated. The concentrations of dissolved inorganic nitrogen (DIN), chemical of gen demand (COD) and chlorophyll a decreased more or less after dispersion, while the concentration of suspended solid (SS) increased. The concentrations of dissolved oxygen (DO) and dissolved inorganic phosphorous (DIP) were kept constant. These results indicated that the dispersion concentration of more than $10g/{\ell}$ has a good removal efficiency of above $80\%$ without big variation of water quality after dispersion of yellow loess.

  • PDF

Changes in Sediment Properties Caused by a Covering of Oyster Shells Pyrolyzed at a Low Temperature (저온 소성 굴 패각의 피복에 의한 연안 오염 퇴적물의 성상 변화에 관한 연구)

  • Kim, Hyung-Chul;Woo, Hee-Eun;Jeong, Ilwon;Oh, Seok-Jin;Lee, Seong-Ho;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.74-80
    • /
    • 2019
  • In this study, pyrolyzed oyster shells at a low temperature ($350^{\circ}C$) were applied for a mesocosm experiment to confirm resulting changes in the properties of sediment. After creating a covering of oyster shells, an increase in ORP and decrease in ammonia in the overlying water was observed in an experimental case. The decrease of TOC in this experiment was due to the dilution of organic matter due to the addition of inorganic matter (pyrolyzed oyster shells). The decrease in the concentration of AVS was observed due to the adsorption of AVS by the surface of the oyster shells. From the results obtained in this experiment, it has been concluded that pyrolyzed oyster shells at a low temperature can be used for remediation of polluted sediment.

Effects of Physicochemical and Environmental Factors on Spatial and Temporal Variations in Phytoplankton Pigment and its Community Composition in Jinhae Bay (진해만에서 물리화학적 환경요인이 식물플랑크톤 색소 및 군집조성의 시공간적 변화에 미치는 영향)

  • Na, Sujin;Lee, Jiyoung;Kim, Jeong Bae;Koo, Jun-Ho;Lee, Garam;Hwang, Hyunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.340-354
    • /
    • 2021
  • The aim of this study was to investigate the spatial and temporal distribution of phytoplankton biomass and community composition in Jinhae Bay on the southern coast of Korea. Phytoplankton pigment analysis was conducted using ultra performance liquid chromatography (UPLC) were conducted from April to December 2019 at seven stations. Temperature, salinity, and dissolved oxygen (DO) and inorganic nutrients (dissolved nitrogen, dissolved phosphorus, and orthosilicic acid) were measured to investigate the environmental factors associated with the structure of phytoplankton community. Phytoplankton biomass (Chl-a) was the highest in July (mean 15.4±4.3 ㎍/L) and the lowest in December (mean 3.5±0.6 ㎍/L). Fucoxanthin was the most abundant carotenoid and showed a similar variation pattern to Chl-a, peridinin, and Chl-b. Phytoplankton community composition analysis showed that diatoms were a predominant group with an average abundance of 70 % whereas chlorophytes, cryptophytes, and dinoflagellates often appeared with lower averages. Further, the dominance of diatoms was closely correlated with water temperature and N:P ratio, which might be influenced by high temperatures in the summer and nutrient loading from the land. Additionally, freshwater and nutrient input by rainfall was estimated to be the most important environmental factor. Hence, the spatial and temporal variations in the composition of phytoplankton pigments and phytoplankton community were correlated with physicochemical and environmental parameters.

Improvement of Water Quality Using Ultra Filtration System in Artificial Seed Production of Olive Flounder, Paralichthys olivaceus (넙치 인공종묘생산에 있어 막분리 여과 시스템을 이용한 수질환경의 개선)

  • Jung Gwan Sik;Ann Chang Bum;Oh Myung Joo;Ji Seung Cheol;Yoo Jin Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.639-643
    • /
    • 2002
  • Water quality, bacterial phase and fish growth rate were analyzed in the process of artificial seed production of flounder (Paralichtys oliraceus) larvae to investigate the water quality in rearing tank using Ultra Filtration System (UES). Sand Filtration System (SFS) and Ultra Filtration System (Ins) were set up in the experimental group. For the analysis of water quality, pH, salinity, DO, SS, COD, $NH_{4}^{+},\;NO_{2}^{-},\;NO^-,\;DIN$ (dissolved inorganic nitrogen) and DU (dissolved inorganic phosphate) were measured. There was no data difference between SFS group and UES group in most analysis items, but the UEs group showed low salinity and low 55 values, such that salinity was $33.5\%_{\circ}$ in SES group and $30.2\%_{\circ}$ in WS group and 55 was 15.5 mL/L in SES group and 7.0 mL/L for UPS group. For changes in bacterial phase and TBC (Total Bacterial Counts), in SES group, 6$\times$10^{5}CFU/mL in seawater decreased to the ratio of about 116, and TBC, Genus Vibrio and bacteria in the Genus Acinetobacter and Genus Micrococcus sharply increased after nine days, while stable bacterial phase was maintained low in UES group during the experiment except for Genus Ajteromonas. In the growth of the larvae, fish length was 17.0 mm (SGR 14.0) in the SES group and 18.8 mm (SGR 14.3) in the UFS group. It is concluded that when water is supplied for artificial seed production with WS, stabilization of water quality condition and inhibition of bacterial multiplication are possible. When production environment becomes stable, stable growth of fish becomes possible by reduction of environmental stress.

Seasonal changes in phytoplankton community related with environmental factors in the Busan coastal region in 2014 (2014년 부산 연안 해역에서 계절적 환경특성에 따른 식물플랑크톤 군집의 변화양상)

  • JI Nam Yoon;Young Kyun Lim;Dong Sun Kim;Young Ok Kim;Seung Ho Baek
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.112-123
    • /
    • 2022
  • To assess the influence of environmental factors on the phytoplankton community structure and total phytoplankton biomass during four seasons in 2014, we investigated the abiotic and biotic factors at 25 stations in the Busan coastal region. The phytoplankton community and total phytoplankton biomass were strongly dependent on the discharge from the Nakdong River, and the high density of phytoplankton was related with the introduction of the Tsushima Warm Current (TWC), particularly in the thermohaline fronts of the fall season. The relationship between the salinity and nutrient (Dissolved inorganic nitrogen=DIN: R2=0.72, p<0.001 and Dissolved inorganic silicon=DSi: R2=0.78, p<0.001) highly correlated with the river discharge, implying that those nutrients have played a crucial role in the growth of diatom and cryptophyta. The total phytoplankton biomass was highest in the summer followed by autumn, spring, and winter. Diatom and cryptophyta species were dominant species during the four seasons. Additionally, there were strong positive correlations between Chlorophyll a and total phytoplankton biomass (R2=0.84, p<0.001), cryptophyta (R2=0.76, p<0.001) and diatom (R2=0.50, p<0.001), respectively. In particular, we found that there were significant differences in the nutrients, phytoplankton community compositions, and total phytoplankton biomass between the inner and the outer coastal region of Busan, depending on the amount of river discharge from the Nakdong River, particularly during rainy seasons. Therefore, the seasonal change of TWC and river discharge from the Nakdong River serve an important role in determining phytoplankton population dynamics in the Busan coastal region.

Oceanographic Features Around Aquaculture Areas of the Eastern Coast of Korea (동해안 연안양식장 주변해역의 해양학적 특성)

  • Jeong, Hee-Dong;Kim, Sang-Woo;Kwon, Kee-Young;Lim, Jin-Wook;Kwoun, Chul-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.334-344
    • /
    • 2013
  • In order to understand the characteristics of oceanic environment in the coastal aquaculture waters of the East Sea, the observation of the CTD (temperature and salinity), dissolved oxygen, chlorophyll a and N/P (DIN ($NO_2$-N, $NO_3$-N, $NH_4$-N) : DIP($PO_4$-P)) ratio was carried out at Sokcho, Jukbyon and Gampo in February, April, June, August, October, December 2013. Based on T(temperature)-S(salinity) diagram analysis, the water masses in the study area were divided into 3 groups; Tsushima Surface Water (TSW: $20-28.3^{\circ}C$ temperatures and 31.04-33.75 salinities), Tsushima Middle Water (TMW: $8.1-16.3^{\circ}C$ and 33.00-34.49), and North Korean Cold Water (NKCW: $1.8-9.4^{\circ}C$ and 33.78-34.42). In winter, DO concentrations in the northern part were higher than those in southern part. In spring and fall, they were low in the surface layer, and increased in summer. Chl-a concentrations < $0.4{\mu}g/L$ dominated in February, April, October and December. Chl-a concentrations were higher in June and August. In particular, the highest Chl-a concentration > $2{\mu}g/L$ was observed in the middle layer of Gampo in August. In February, April, June and December, the N/P ratio in the most of the water masses was less than the Redfield ratio (16), indicating that nitrate did act as a limiting factor in phytoplankton growth. On the contrary, in August and October, the N/P ratio in surface and sub-surface layer was greater than the Redfield ratio, suggesting that phosphate was a limiting factor.

Dynamics of Phytoplankton and Zooplankton of a Shallow Eutrophic Lake (lake llgam) (수심이 얕은 부영양 인공호(일감호)의 동 ${\cdot}$ 식물플랑크톤 동태학)

  • Kim, Ho-Sub;Park, Je-Chul;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.286-294
    • /
    • 2003
  • This study was attempted to understand seasonal dynamics of phyto- and zooplankton communities in shallow, eutrophic Lake llgam and to compare them with the PEG (Plankton Ecology Group) model. Seasonal succession pattern of phytoplankton community was similar to PEG model as Chlorophyceae and Baciliphyceae increase during spring and autumn fellowed by increase of Cyanophyceae. However, based on the cell density and biomass, a dominant phytoplankton community differed with PEG model: Cyanophyceae had been a dominant community throughout a year, except for ice-cover period during which Chlorophyceae was a dominant group. In spring, when ice melted and dissolved nutrients in water column increased, the increase of Chlorophyceae occurred: when nutrients (DIN and DIP) rapidly decreased, Cyanophyceae increase occurred. Microcystis, Oscillatoria, Lyngbya, Merismopedia were maior dominant species of Cyanophyceae and their cell density and/or biomass was the highest in October 2000 (12.9${\pm}$5.8${\times}10^5$ cells/ml, 3.5${\pm}$0.9${\times}10^3{\mu}gC/l$). Cyanophyceae biomass showed positive relationship with chlorophyll a ($r^2$ = 0.71,P< 0.001) and TP concentration ($r^2$ = 0.62, P< 0.001). Small-sized rotifers such as Keratella cochlearis, increased between March and May when Chlorophyceae increased. Both high standing crop of copepods and cladocerans, such as Diaphanosoma brachyrum and Bosmina longirostris occurred between June and September accompanied with the increase of Dinophyceae and Bacillariophyceae. There was no evidence that clear-water phase was caused by zooplankton grazing. The diversity and evenness index of phyto- and/or zooplankton increased with chlorophyll a concentration. These results suggest zooplankton grazing and limiting nutrient deficiency could lead to change of phytoplankton biomass, but not the phytoplankton community in Lake llgam.

The Physiochemical Characteristics of Seawater and Sediment of Marine Shellfish Farm in Jindong Bay (진동만 패류양식해역의 환경특성)

  • Jeong, Woo-Geon;Cho, Sang-Man
    • The Korean Journal of Malacology
    • /
    • v.19 no.2
    • /
    • pp.161-169
    • /
    • 2003
  • Seawater and sediment quality analysed was calculated to examinate the present environmental characteristics and pollution load was also calculated to evaluate the effect of farming area on the coastal environment. The measurements for seawater quality demonstrate the coastal environment has relatively eutrophicated with significantly decreased DO (0.2-8.5 mg/l) and elevated COD (9.6-31.2 mg/l) in summer. It was also evident that the water quality in Jindong Bay has been influenced by residues tide from Masan Bay with high metal concentration in August of 2002. Annual total pollution load (land and farm-driven) was estimated at 37,316 ton (SS) /yr: 9,809 ton/yr (26.3%) of land-driven load, 23,576 ton/yr (63.2%) of coastal sedimentation and 3,932 ton/yr (10.5%) of feces of cultural organisms. When all ark shell seedling farms are permitted species conversion to ascidian farm, the pollution load would increase by 196%, which may be another source for accelerating the eutrophication of the environment in Jindong Bay.

  • PDF

Evaluation of Spatial and Temporal Variations of Water Quality in Lake Shihwa and Outer Sea by Using Water Quality Index in Korea: A Case Study of Influence of Tidal Power Plant Operation (수질평가지수를 이용한 시화호 내측 및 외측 해역의 시·공간적 수질 변화 평가: 조력발전소 가동에 따른 영향 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Sung-Keun;Kim, Eu-Yeol;Lee, Seung-Yong;Park, Eun-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.102-114
    • /
    • 2013
  • The basin of Lake Shihwa is one of highly industrialized region of Korea and a current environmental issue of study area is the operation of tidal power plant (TPP) to improve water quality. The application of water quality index (WQI) which integrates five physiochemical parameters (transparency, DO, DIN, DIP and chlorophyll-a) of water quality in Lake Shihwa and outer sea during 2011~2012 were performed not only to evaluate the spatial and temporal distribution of the water quality but also to assess the effect of water quality improvement by the operation of tidal power plant. The higher WQI values were observed in monitored sites near the industrial complexes in Lake Shihwa and the outfall of wastewater treatment plants (WWTPs) in outer sea. This indicates that the quality of seawater is influenced by diffuse non-point sources from industrial, municipal and agricultural areas in Lake Shihwa and by point sources from the effluence of municipal and industrial wastewater throughout WWTPs in outer sea. Mean WQI value decreased from 53.0 in 2011 to 42.8 in 2012 of Lake Shihwa. Water quality has improved significantly after TPP operation because enhancement of seawater exchange between Lake Shihwa and outer sea leads to improve a hypoxic condition which is primarily a problem in Lake Shihwa. Mean WQI of outer sea showed similar values between 2011 and 2012. However, the results of hierarchical cluster analysis and the deterioration of water quality in summer season indicate that the operation of tidal power plant was not improved the water quality in the upper most area of Lake Shihwa. To successfully improve overall water quality of Lake Shihwa, it is urgently necessary to manage and reduce of non-point pollution sources of the basin of Lake Shihwa.