• Title/Summary/Keyword: DIN/DIP

Search Result 162, Processing Time 0.029 seconds

Estimating Benthic Nutrient Fluxes at the Sediment-Water Interface for the Management of Tidal Flats in Gomso and Geunso Bays (곰소만·근소만 갯벌어장 관리를 위한 퇴적물-해수 경계면에서 영양염 플럭스 추정)

  • Jeon, Seung Ryul;Cho, Yoon-Sik;Choi, Yoon-Seok;Kim, Kyung-Tae;Choi, Yong-Hyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.878-884
    • /
    • 2017
  • It is important to understand interactions in the sediment-water environment because nitrate (N) and phosphorus (P) nutrient fluxes released into overlying water can represent a significant fraction of the total nutrient requirement for primary productivity. In this study, we analyzed and estimated benthic nutrient fluxes at the sediment-water interface, investigating environmental conditions in Gomso and Geunso Bays. Also, we compared previously reported nutrient flux data to identify regional differences. As a result, benthic nutrient fluxes in Beopsan were DIN: $6.14mmol\;m^{-2}d^{-1}$ and DIP: $0.32mmol\;m^{-2}d^{-1}$ higher than other survey sites. Sediment COD were $4.0-10.8mg/g{\cdot}dry$, and environmental deterioration was observed due to organic pollution. If no solution is found for tidal flat farm management, problems such as a decrease in aquaculture production will follow. Therefore, long-term monitoring of tidal flat environments should be pursued to enable the sustainable use of biological resources.

WQI Class Prediction of Sihwa Lake Using Machine Learning-Based Models (기계학습 기반 모델을 활용한 시화호의 수질평가지수 등급 예측)

  • KIM, SOO BIN;LEE, JAE SEONG;KIM, KYUNG TAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.71-86
    • /
    • 2022
  • The water quality index (WQI) has been widely used to evaluate marine water quality. The WQI in Korea is categorized into five classes by marine environmental standards. But, the WQI calculation on huge datasets is a very complex and time-consuming process. In this regard, the current study proposed machine learning (ML) based models to predict WQI class by using water quality datasets. Sihwa Lake, one of specially-managed coastal zone, was selected as a modeling site. In this study, adaptive boosting (AdaBoost) and tree-based pipeline optimization (TPOT) algorithms were used to train models and each model performance was evaluated by metrics (accuracy, precision, F1, and Log loss) on classification. Before training, the feature importance and sensitivity analysis were conducted to find out the best input combination for each algorithm. The results proved that the bottom dissolved oxygen (DOBot) was the most important variable affecting model performance. Conversely, surface dissolved inorganic nitrogen (DINSur) and dissolved inorganic phosphorus (DIPSur) had weaker effects on the prediction of WQI class. In addition, the performance varied over features including stations, seasons, and WQI classes by comparing spatio-temporal and class sensitivities of each best model. In conclusion, the modeling results showed that the TPOT algorithm has better performance rather than the AdaBoost algorithm without considering feature selection. Moreover, the WQI class for unknown water quality datasets could be surely predicted using the TPOT model trained with satisfactory training datasets.

Characteristics of Horizontal Community Distribution and Nutrient Limitation on Growth Rate of Phytoplankton during a Winter in Gwangyang Bay, Korea (동계 광양만에서 식물플랑크톤 군집구조의 수평적 분포특성과 성장에 미치는 영양염 제한 특성)

  • Baek, Seung-Ho;Kim, Dong-Sun;Hyun, Bong-Gil;Choi, Hyun-Woo;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.99-111
    • /
    • 2011
  • To estimate the effects of limitation nutrients for phytoplankton growth and its influences on short-term variations of a winter phytoplankton community structure, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas from 6 to 7 February in Gwangyang Bay, Korea. Also, several algal bio-assay studies were conducted to identify any additional nutrient effects on phytoplankton assemblage using surface water for the assay. The dominant species in the bay was diatom Skeletonema costatum, which occupied more than 70% of total species in most stations (St.1-16) of the inner bay. According to a cluster and multidimensional scaling (MDS) analysis based on phytoplankton community data from each station, the bay was divided into three groups. The first group included stations from the south-western parts of Myodo lsland, which can be characterized as a semien-closed eutrophic area with high phytoplankton abundance. The second group included most stations from the north-eastern part of Myodo lsland, influenced indirectly by surface water currents from offshore of the bay. The standing phytoplankton crops were lower than those of the first group. The other cluster was restricted to samples collected from offshore of the bay. In the bay, silicon (Si) and phosphorus (P) were not a major limiting factor for phytoplankton production. However, since the DIN: DIP and DSi: DIN ratios clearly demonstrated that there were potential stoichiometric N limitations, nitrogen (N) was considered as a limiting factor. Based on the algal bio-assay, in vivo fluorescence values in N (+) added experiments were higher compared to control and P added experiments. Our results suggested that nitrogen may act as one of the most important factors in controlling primary production during winter in Gwangyang Bay.

The Variation of Water Quality due to Sulice Gate Operation in Shiwha Lake (시화호의 배수갑문 운용에 따른 수질변화)

  • 김종구;김준우;조은일
    • Journal of Environmental Science International
    • /
    • v.11 no.12
    • /
    • pp.1205-1215
    • /
    • 2002
  • To evaluate the change for water quality after the water gate operation in Shiwha lake, in situ survey were conducted on september in 2000 and January, march, jane in 2001. Chemical characteristics and eutrophication level was estimated from the survey data. The water quality of the Shihwa lake was greatly affected by pollutant load from rainfall, and formation of stratification in summer and winter was increased to effect on nutrient release from sediment. Especially, high concentration of chlorophyll-a was occurred in autumn, due to increased nutrient, high water temperature and low salinity after rainfall runoff. The mean concentration of DIN, DIP were 0.346mg/L, 0.0217mg/L in surface water and 0.826mg/L, 0.0415mg/L in bottom water, respectively, which were over III grade of seawater standard. Also high percentage of ammonia nitrogen to DIN in bottom water for autumn and winter was affected by released nutrient from sediment. Correlation analysis of chlorophyll-a versus TSS was shown that organic matter was affected by autochthonous organic matter stem from the algae, these factor showed reverse correlation about salinity. Closely correlations among to the water quality constituent in continuity survey was appeared. The results of eutrophication index estimation showed the high potentiality of red tide occurrence in Shiwha lake, particularity in summer or fall. Overall water quality was greatly improve to compared with measuring data during 1997~1998 at the beginning water gate operation, which reported by KORDI. Therefore, to improve of water quality in Shiwha lake, we need to establish of management plan about nutrient release from sediment, rainfall runoff, maximum of seawater exchange.

Characteristic Distributions of Nutrients and Water Quality Parameters in the Vicinity of Mokpo Harbor after Freshwater Inputs (담수 유입에 따른 목포항 주변해역의 영양염 및 수질인자 분포 특성)

  • Kim, Yeong-Tae;Choi, Yoon-Seok;Cho, Yoon-Sik;Choi, Yong Hyeon;Jeon, Seungryul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.617-636
    • /
    • 2015
  • The Mokpo coastal waters receive discharges from three artificial lakes(Youngsan, Youngam, Geumho) and other terrigenous freshwater inflows(streams, sewage treatment effluent, fresh groundwater), which exhibit very high concentrations of nutrients and/or organic matters. To understand spatial distributions of nutrients(DIN, DIP, DSi) and other water quality parameters(Chl-a, water temperature, salinity, DO, COD, SS), field surveys were conducted at 10 stations in the Mokpo harbor and adjacent estuaries on May, July, September, and November 2008 within 10 days following discharge events from artificial lakes. In this study, the freshwater flow rate influxed by the operation of sea dike sluice had significant influence on water qualities of the Mokpo coastal waters, although nutrient concentrations in other freshwater sources such as streams, sewage treatment effluent, and fresh groundwater were much higher. As a result of statistical analysis, DIN, COD, and Chl-a had a negative correlation with salinity. Therefore it was shown that discharge extents, time, and nutrients from the Youngsan lake were major impact factors dominating the spatial characteristics of nutrients and other water quality parameters in the Mokpo harbor and adjacent waters. However, despite non-discharge from the Youngsan Lake on September of this investigated period, it was observed that the nutrient addition was taking place in the lower layer of the estuary suggesting nutrient supply through different pathways. This result has emphasized the need to implement the combined assessment about the cumulative impacts on the Youngsan Estuary environment and ecosystem due to freshwater inputs derived from the artificial lakes as well as other terrigenous inflows, or benthic releases.

Factor Analysis of the Seawater Quality of the Southern Coastal Waters of Korea

  • Lee Yong-Hwan;Jung Kyoo-Jin;Kim Hak-Kook
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.140-148
    • /
    • 2003
  • On the basis of factor analysis, stations were grouped according to their similar characteristics of seawater quality. The data for factor analysis were collected from the 15 stations from Dukryang Bay to Ulsan Bay on the southern cost of Korea. The study was based on the data from 1991 to 2000. The 8 water quality items analyzed were temperature, salinity, pH, DO, COD, DIN (dissolved inorganic nitrogen), DIP (dissolved inorganic phosphorus), and SS (suspended solid). Analysis of 6 water quality items including DO with the exception of temperature and salinity showed that 15 stations were grouped into two zones, i.e., the western and the eastern coast, by the axis of Samcheonpo-Jinju Bay-south of Geoje, 3 seawater zones in all. The adjacent stations to the southward or northward but not those to the eastward or westward were classified into the same group. On the analysis of all of the 8 water quality items, the stations of Dukryang Bay and Goheung; and those of Onsan and Ulsan Bay were classified into the same group. Yeosu and Namhae stations were sectioned into 1 group on the all seawater quality items but DIP, Samcheonpo and south of Geoje stations another group on all seawater quality items but water temperature, and Masan and Busan stations in the other group on all seawater quality items but DO. The stations from Dukryang Bay through Goheung to east of Geoje were grouped together on the COD item, and this showed somewhat different tendency in other seawater quality items.

The Budget of Nutrients in the Estuaries Near Mokpo Harbor (목포항 주변 하구역의 영양염 수지)

  • Kim, Yeong-Tae;Choi, Yoon-Seok;Cho, Yoon-Sik;Oh, Hyun-Taik;Jeon, Seung-Ryul;Choi, Yong Hyeon;Han, Hyoung-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.708-722
    • /
    • 2016
  • Land-Ocean Interactions in the Coastal Zone (LOICZ) models for nutrient budgets were used to estimate the seasonal capacity of the Youngsan Estuary and Youngam-Geumho Estuary to sink and/or supply nutrients such as dissolved inorganic phosphorus (DIP) and nitrogen (DIN) to provide an understanding of the behavior of the coupled biogeochemical cycles of phosphorus and nitrogen in the estuaries (Youngsan Estuary, Youngam-Geumho Estuary) near Mokpo Harbor. During non-stratified periods (May, September, and November, 2008), simple three-box models were applied in each sub-region of the system, while a two-layer box model was applied during on-site observation of stratification development (July, 2008). The resulting mass-balance calculation indicated that even after large discharges from artificial lakes (in May and July), DIP influxes due to a mixing exchange ($V_{X-3}$, or $V_{deep}$) were more than terrigenous loads, indicating the backward transportation of nutrients from a marine source. The model results also indicated that for nutrient loads (DIP and DIN fluxes) in September, an extreme congestion of nutrients occurred around the mouths (sub-region III of the model) of the estuaries, possibly due to an imbalance in physical circulations between the estuaries and offshore locations. In November, the Youngam-Geumho Estuary, into which freshwater was discharged from artificial lakes (Youngam and Geumho Lake), showed nutrient enrichment in the water column, but the Youngsan Estuary showed nutrient depletion. In conclusion, to efficiently control water quality in the estuaries near Mokpo Harbor, integrated environmental management programs should be implemented. I.e., the reduction of nutrient loads from land basins as well as the deposit of nutrient loads into adjacent coastal lines.

Temporal Variation of Water Quality of the Western Chinhae Bay in Summer (진해만 서부해역의 하계 수질의 시간변동 특성)

  • Cho Hyeon-Seo;Lee Dae-In;Yoon Yang-Ho;Lee Moon-Ok;Kim Dong-Myung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • Temporal changes of Chl-α, physical and chemical factors were investigated by diurnal observation at 2-hour interval at three fixed stations in the western Chinhae Bay from 12 Aug. to 13 Aug. 1999. Difference of dissolved oxygen between surface and bottom layer was maximum when the thermocline were strong. Organic distribution such as COD was affected by the growth of phytoplankton. Limitting factor was nitrogen, that is, inorganic nitrogen plays a significant role on regulating the algal growth. Surface distribution of dissolved inorganic nitrogen was very low compared to bottom layer by uptake of organisms. Maximum value of Chl-α at station C2 and C11 were observed from subsurface layer, ranges of which exceeded possibility concentration of red tide outbreak, 10 mg/㎥. On the other hand, that of C15 exist at surface layer. In this area, DIN and DIP concentrations increased by input sources such as rainfall and benthic flux before the bloom of phytoplankton. Accumulation of phytoplankton occurred at subsurface layer by the rapid uptake of DIN, especially nitrate ion, when strong thermocline existed as approach to the afternoon, which led to the increase of organics in water column and oxygen deficiency water mass at bottom layer until late at evening. Since then, DIN increases gradually as water temperature decrease to minimum. The quantitative understanding of nitrogen of fluxed to and from the various sources is necessary for environmental management.

  • PDF

Water Quality Variations in Jinhae Bay by Dredging & Operating the Sewage Disposal Plant (마산만 준설사업 및 하수처리장 가동에 따른 진해만의 수질변동)

  • YOON SUK-JIN;LEE IN-CHEOL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.117-122
    • /
    • 2004
  • This study investigates the spatial and temporal distribution characteristics and relationships among water quality parameters, which based on 6 years' data(from 1989 to 1994) measured at 16 stations on Jinhae Bay. The results of these analysis, monthly variations range between surface and bottom layer of water quality had a tendency to increase and decrease, and appeared to be at the maximum value in August. The relationships between concentration of COD ana nutrients(DIN and DIP), which obtained by correlation analysis of water quality, were shown $85\%$ and $74\%$, respectively. Using the cluster analysis to develop the division of the sea basin by the dendrogram, before and after dredging of Masan bay and operating a sewage disposal plant, the variation characteristics of water quality of Jinhae Bay were discussed. Through it, we can see the serious pollution of northen sea basin of Jinhae Bay(B2) although dredging Masan bay and operating the sewage disposal plant. As the results, it doesn't appear the improvement effect of water quality in spite of carrying out the effort of water quality improvement.

  • PDF

Ecological Model Experiments of the Spring Bloom at a Dumping Site in the Yellow Sea (생태계모델을 이용한 황해투기해역에서의 춘계 식물플랑크톤 대증식 연구)

  • Song, Kyu-Min;Lee, Sang-Ryong;Lee, Seok;Ahn, Yu-Hwan
    • Ocean and Polar Research
    • /
    • v.29 no.3
    • /
    • pp.217-231
    • /
    • 2007
  • To explore limiting factors of spring bloom caused by waste disposal after dumping activity commenced in the Yellow Sea, we used a 1-dimensional temperature-ecological coupled model. The vertical structure of temperature and vertical diffusivity (Kh) are calculated by the temperature model with sea surface temperature using the 2.5 layers turbulence closure scheme. The ecological model applied results at the temperature model consisted of five state variables (DIN, DIP, phytoplankton, zooplankton, and detritus) forced by photosynthetically available radiation. We simulate year-to-year variations of plankton and nutrients using the coupled model from 1998 to 2000 and compare results of the model with observed data. It turned out that temperature is the growth factor of spring bloom in dumping area. During the winter the weak stratification made sufficient supply of the accumulated nutrients from the sea bed into the upper water column and led to the bloom in the coming spring. Radiation also turned out to be another important factor of spring bloom in the study area. Insufficient radiation of March 1999 showed low chlorophyll-a concentration despite sufficient nutrients in the surface.