• Title/Summary/Keyword: DICOH file

Search Result 1, Processing Time 0.015 seconds

Finite Element Modeling and Nonlinear Analysis of Lumbosacrum Including Partial Ilium and Iliolumbar Ligaments (부분 장골과 장요추 인대를 포함한 요추 천추골의 유한 요소 모델링 및 비선형 해석)

  • Ha, S.K.;Lim, J.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.397-409
    • /
    • 2007
  • Owing to needs of biomechanical comprehension and analysis to obtain various medical treatment designs which are related with the spine in order to cure and diagnose LBP patients, the FE modeling and nonlinear analysis of lumbosacrum including a partial ilium and iliolumbar ligaments, were carried out. First, we investigated whether the geometrical configuration of vertebrae displayed by DICOM slice files is regular and normal condition. After constructing spinal vertebrae including a partial ilium, a sacrum and five lumbars (from L1 to L5)with anatomical shape reconstructed using softwares such as image modeler and CAD modeler, we added iliolumbar ligaments, lumbar ligaments, discs and facet joints, etc.. And also, we assigned material property and discretized the model using proper finite element types, thus it was completely modeled through the above procedure. For the verification of each segment, average sagittal ROM, average coronal ROM and average transversal ROM under various loading conditions(${\pm}10Nm$), average vertical displacement under compression(400N), ALL(Anterior Longitudinal Ligament) and PLL(Posterior Longitudinal Ligament) force at L12 level, strains of seven ligaments on sagittal plane at L45 level and maximal strain of disc fibers according to various loading conditions at L45 level, etc., they were compared with experimental results. For the verification of multilevel-lumbosacrum spine including partial ilium and iliolumbar ligaments, the cases with and without iliolumbar ligaments were compared with ROM of experiment. The results were obtained from analysis of the verified FE model as follows: I) Iliolumbar ligaments played a stabilizing role as mainly posterior iliolumbar ligaments under flexion and as both posterior and anterior iliolumbar ligaments of one side under lateral bending. 2) The iliolumbar ligaments decreased total ROM of 1-8% in total model according to various motion conditions, which changed facet contact forces of L5S level by approximately 0.8-1.4 times and disc forces of L5S level by approximately 0.8-1.5 times more than casewithout ilioligaments, under various loading conditions. 3) The force of lower discs such as L45 and L5S was bigger than upper discs under flexion, left and right bending and left and right twisting, except extension. 4) It was predicted that strains of posterior ligaments among iliolumbar ligaments would produce the maximum 16% under flexion and the maximum 10% under twisting. 5) It's expected that this present model applies to the development and design of artificial disc, since it was comparatively in agreement with the experimental datum.