• 제목/요약/키워드: DI model

검색결과 402건 처리시간 0.025초

Full field strain measurements of composite wing by digital image correlation

  • Pagani, A.;Zappino, E.;de Miguel, A.G.;Martilla, V.;Carrera, E.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권1호
    • /
    • pp.69-86
    • /
    • 2019
  • This paper discusses the use of the Digital Image Correlation (DIC) technique for the displacement and strain measurements of a wet lay-up composite wing. As opposed to classical strain gages, DIC allows to conduct full field strain analysis of simple to complex structural parts. In this work, wing-up bending tests and measurements of the composite wing of the Dardo Aspect by CFM Air are carried out through an ad-hoc test rig and the Q-400 DIC system by Dantec Dynamics. Also, the results are used to validate a finite element model of the structure under investigation.

Multizone 모델을 이용한 직접분사식 디젤엔진 성능 예측에 관한 연구 (A Prediction of DI Diesel engine Performance using the Multizone Model)

  • 황재원;;박재근;장기현;채재우
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.40-47
    • /
    • 2000
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed. This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. This model is developed based on the concept of Hiroyasu's multizone combustion models. It takes nozzle injection (spray) parameters, induction swirl into consideration and the models of zone velocity, air entrainment, fuel droplet evaporation and mixture combustion are upgraded. Various parameters, such as cylinder pressure, heat release rate, Nox and soot emission, and these parameters in the zone are simulated. The results are compared with the experimental ones, too.

  • PDF

Reynolds stress correction by data assimilation methods with physical constraints

  • Thomas Philibert;Andrea Ferrero;Angelo Iollo;Francesco Larocca
    • Advances in aircraft and spacecraft science
    • /
    • 제10권6호
    • /
    • pp.521-543
    • /
    • 2023
  • Reynolds-averaged Navier-Stokes (RANS) models are extensively employed in industrial settings for the purpose of simulating intricate fluid flows. However, these models are subject to certain limitations. Notably, disparities persist in the Reynolds stresses when comparing the RANS model with high-fidelity data obtained from Direct Numerical Simulation (DNS) or experimental measurements. In this work we propose an approach to mitigate these discrepancies while retaining the favorable attributes of the Menter Shear Stress Transport (SST) model, such as its significantly lower computational expense compared to DNS simulations. This strategy entails incorporating an explicit algebraic model and employing a neural network to correct the turbulent characteristic time. The imposition of realizability constraints is investigated through the introduction of penalization terms. The assimilated Reynolds stress model demonstrates good predictive performance in both in-sample and out-of-sample flow configurations. This suggests that the model can effectively capture the turbulent characteristics of the flow and produce physically realistic predictions.

생물검정 및 토양환경요인에 의한 인삼 뿌리썩음병의 발병예측 모형의 적합성 검정 (Fitness Analysis of the Forecasting Model for the Root Rot Progress of Ginseng Based on Bioassay and Soil Environmental Factors)

  • 박규진
    • 식물병연구
    • /
    • 제7권1호
    • /
    • pp.20-24
    • /
    • 2001
  • 생물검정에 의한 유묘 이병율의 직접 조사치, 또는 근면 및 토양요인에 의한 이병율의 추정치를 이용하여 포장내에서의 년생별 지상부 결주율을 추정함으로써 토양에서의 인삼 뿌리썩음병 발병을 예측할 수 있는 시험 모형을 개발하였다. 그리고 발병예측 모형의 용인별 결주율 추정치와 포장에서 결주율 조사치간의 적합성을 통계분석을 통해 조사한 결과, 유묘 이병율에 의한 결주율 추정치는 근권요인(토양 이화학성 및미생물상 밀도)에 의한 추정치에 비해 결주율 조사치에 대한 적합성이 더 높았다. 조사 포장수를 확대하여 유묘이병율에 의한 발병예측 모형식의 적합성을 재확인한 결과, 저년생 인삼의 결주율 추정치는 3년생 포장, 그리고 고년생 인삼의 결주율 추정치는 5년생 포장에서의 실제 결주율 조사치와 1% 통계적 유의수준에서 일치하였다. 유묘 이병율에 의한 발병예측 모형식은 인삼 뿌리썩음병에 대한 토양 검정 차원에서 적용할 경우 재배예정지의 적지 여부를 판정할 수 있고, 인삼 생육기간 중에 적용할 경우 고년생 포장에서의 병진전을 예측할 수 있어 조기수확 여부를 판정할 수 있을 것으로 사료된다.

  • PDF

FEM vibroacoustic analysis in the cabin of a regional turboprop aircraft

  • Cinefra, Maria;Passabi, Sebastiano;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • 제5권4호
    • /
    • pp.477-498
    • /
    • 2018
  • The main goal of this article is to validate a methodological process in Actran MSC Software, that is based on the Finite Element Method, to evaluate the comfort in the cabin of a regional aircraft and to study the noise and vibrations reduction through the fuselage by the use of innovative materials. In the preliminary work phase, the CAD model of a fuselage section was created representing the typical features and dimensions of an airplane for regional flights. Subsequently, this model has been imported in Actran and the Sound Pressure Level (SPL) inside the cabin has been analyzed; moreover, the noise reduction through the fuselage has been evaluated. An important investigation and data collection has been carried out for the study of the aircraft cabin to make it as close as possible to a real problem, both in geometry and in materials. The mesh of the structure has been built from the CAD model and has been simplified in order to reduce the number of degrees of freedom. Finally, different fuselage configurations in terms of materials are compared: in particular, aluminum, composite and sandwich material with composite skins and poroelastic core are considered.

Marine gas turbine monitoring and diagnostics by simulation and pattern recognition

  • Campora, Ugo;Cravero, Carlo;Zaccone, Raphael
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권5호
    • /
    • pp.617-628
    • /
    • 2018
  • Several techniques have been developed in the last years for energy conversion and aeronautic propulsion plants monitoring and diagnostics, to ensure non-stop availability and safety, mainly based on machine learning and pattern recognition methods, which need large databases of measures. This paper aims to describe a simulation based monitoring and diagnostic method to overcome the lack of data. An application on a gas turbine powered frigate is shown. A MATLAB-SIMULINK(R) model of the frigate propulsion system has been used to generate a database of different faulty conditions of the plant. A monitoring and diagnostic system, based on Mahalanobis distance and artificial neural networks have been developed. Experimental data measured during the sea trials have been used for model calibration and validation. Test runs of the procedure have been carried out in a number of simulated degradation cases: in all the considered cases, malfunctions have been successfully detected by the developed model.

Polysulfone에 추출제 Di-(2-ethylhexyl)phosphoric acid (D2EHPA)와 tri-butyl-phosphate(TBP)를 고정화한 고체상 추출제의 제조와 Cu(II)의 제거 특성 (Preparation of Solid-Phase Extractant by Immobilizing Di-(2-ethylhexyl)phosphoric Acid (D2EHPA) and Tri-butyl-phosphate (TBP) in Polysulfone and Removal Characteristics of Cu(II))

  • 감상규;전진우;이민규
    • 한국환경과학회지
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2015
  • The solid-phase extractant PS-D2EHPA/TBP was prepared by immobilizing two extractants D2EHPA and TBP in polysulfone (PS). The prepared PS-D2EHPA/TBP was characterized by using fourier transform infrared spectrometer (FTIR) and scanning electron microscopy (SEM). The removal of Cu(II) from aqueous solution was investigated in batch system. The experiment data were obeyed the pseudo-second-order kinetic model. Equilibrium data were well fitted by Langmuir model and the removal capacity of Cu(II) by solid extractant PS-D2EHPA/TBP obtained from Langmuir model was 3.11 mg/g at 288 K. The removal capacity of Cu(II) was increased according to increasing pH from 2 to 6, but the removal capacity was decreased below pH 3 remarkably.

Spiral Waves and Shocks in Discs around Black Holes: Low Compressibility and High Compressibility Models

  • LANZAFAME GIUSEPPE;BELVEDERE GAETANO
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.313-315
    • /
    • 2001
  • Some authors have concluded that spiral structures and shocks do not develop if an adiabatic index $\gamma$ > 1.16 is adopted in accretion disc modelling, whilst others have claimed that they obtained well defined spirals and shocks adopting a $\gamma$ = 1.2 and a $M_2/ M_1$ = 1 stellar mass ratio. In our opinion, it should be possible to develop spiral structures for low compressibility gas accretion discs if the primary component is a black hole. We considered a primary black hole of 8M0 and a small secondary component of 0.5M$\bigodot$ to favour spiral structures formations and possible spiral shocks via gas compression due to a strong gravitational attraction. We performed two 3D SPH simulations and two 2D SPH simulations and characterized a low compressibility model and a high compressibility model for each couple of simulations. 2D models reveal spiral structures existence. Moreover, spiral shocks are also evident in high compressibility 2D model at the outer disc edge. We believe that we could develop even well defined spiral shocks considering a more massive primary component.

  • PDF

Dynamic characterization of 3D printed lightweight structures

  • Refat, Mohamed;Zappino, Enrico;Sanchez-Majano, Alberto Racionero;Pagani, Alfonso
    • Advances in aircraft and spacecraft science
    • /
    • 제9권4호
    • /
    • pp.301-318
    • /
    • 2022
  • This paper presents the free vibration analysis of 3D printed sandwich beams by using high-order theories based on the Carrera Unified Formulation (CUF). In particular, the component-wise (CW) approach is adopted to achieve a high fidelity model of the printed part. The present model has been used to build an accurate database for collecting first natural frequency of the beams, then predicting Young's modulus based on an inverse problem formulation. The database is built from a set of randomly generated material properties of various values of modulus of elasticity. The inverse problem then allows finding the elastic modulus of the input parameters starting from the information on the required set of the output achieved experimentally. The natural frequencies evaluated during the experimental test acquired using a Digital Image Correlation method have been compared with the results obtained by the means of CUF-CW model. The results obtained from the free-vibration analysis of the FDM beams, performed by higher-order one-dimensional models contained in CUF, are compared with ABAQUS results both first five natural frequency and degree of freedoms. The results have shown that the proposed 1D approach can provide 3D accuracy, in terms of free vibration analysis of FDM printed sandwich beams with a significant reduction in the computational costs.

Numerical simulations of mountain winds in an alpine valley

  • Cantelli, Antonio;Monti, Paolo;Leuzzi, Giovanni;Valerio, Giulia;Pilotti, Marco
    • Wind and Structures
    • /
    • 제24권6호
    • /
    • pp.565-578
    • /
    • 2017
  • The meteorological model WRF is used to investigate the wind circulation in Valle Camonica, Italy, an alpine valley that includes a large subalpine lake. The aim was to obtain the information necessary to evaluate the wind potential of this area and, from a methodological point of view, to suggest how numerical modeling can be used to locate the most interesting spots for wind exploitation. Two simulations are carried out in order to analyze typical scenarios occurring in the valley. In the first one, the diurnal cycle of thermally-induced winds generated by the heating-cooling of the mountain range encircling the valley is analyzed. The results show that the mountain slopes strongly affect the low-level winds during both daytime and nighttime, and that the correct setting of the lake temperature improves the quality of the meteorological fields provided by WRF significantly. The second simulation deals with an event of strong downslope winds caused by the passage of a cold front. Comparisons between simulated and measured wind speed, direction and air temperature are also shown.