• Title/Summary/Keyword: DHMTU

Search Result 6, Processing Time 0.017 seconds

Computational Aerodynamic Analysis of Airfoils for WIG(Wing-In-Ground-Effect) -Craft (지면효과익기 날개에 대한 전산 공력 해석)

  • Joh, Chang-Yeol;Kim, Yang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.37-46
    • /
    • 2004
  • Several notes on ground effects drawn from Navier-Stokes analyses and their aerodynamic interpretations were addressed here; For two-dimensional ground effect, the change of surface pressure due to image vortex, the venturi effect due to thickness and the primary inviscid flow phenomena of ground effect, and for three-dimensional ground effect, strengthened wing tip vortices, increased effective span and the outward drift of trailing vortices. Irodov's criteria were evaluated to investigate the static longitudinal stability of conventional NACA 6409 and DHMTU 8-30 airfoils. The analysis results demonstrated superior static longitudinal stability of DHMTU 8-30 airfoil. The DHMTU airfoil has quite lower value of lrodov's criterion than the conventional NACA airfoil, which require much smaller tail volume to stabilize the whole WIG-craft at its design stage.

Wind Tunnel Test Study on the Wings of WIG Ship (WIG선의 날개에 대한 풍동실험 고찰)

  • Kim, S.K.;Suh, S.B.;Lee, D.H.;Kim, K.E.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 1997
  • This paper presents the results of 3rd wind tunnel test for the wings of WIG R/C test models, 'Hanjin-1' & 'Hanjin-2'. We made 'Hanjin-1' in last May 1995 and had a success in test flight. And in order to grasp the aerodynamic characteristics of wings in ground effect, the measurements of lift and drag were carried out for the various kinds of wing. It was shown that lift and lift-drag ratio increase with decrease of the clearance, but the feature was considerably depended on the shape of wing section. In this case we select the three kind of wing. section, and then compare their characteristics especially for a stability in longitudinal motion. They are NACA6409 for 'Hanjin-1' and the two kinds of DHMTU for ekranoplans of Russia. Experimental results show that the pitching moments of DHMTU wing sections are smaller than NACA6409.

  • PDF

Aerodynamic Design Optimization of Airfoils for WIG Craft Using Response Surface Method (반응표면법을 이용한 지면효과익기 익형의 공력 설계최적화)

  • Kim, Yang-Joon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.18-27
    • /
    • 2005
  • Airfoils with improved longitudinal static stability were designed for a WIG craft through aerodynamic design optimization. The response surface method is coupled with NURBS-based shape functions and Navier-Stokes flow analysis. The procedure runs in the network-distributed design framework of commercial-code based automated design capability to enhance computational efficiency and robustness.Lift maximization design maintaining similar static margin to a DHMTU airfoil successfully produced a new airfoil shape characterized by pronounced front-loading and the well-known reflexed aft-camber line. Another airfoil design of lower variation in pitching moment during take-off showed weakened front-loaded characteristics and hence decreased lift slightly. Investigations using the present design methodology on an existing optimization result based on potential flow analysis and NACA-type geometry generation demonstrated significance of carrying various geometry generations and more realistic flow analysis with optimization.

Numerical And Experimental Studies On Wing In Ground Effect

  • Suh, Sung-Bu;Jung, Kwang-Hyo;Chun, Ho-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.110-119
    • /
    • 2011
  • Numerical and experimental studies were performed to investigate the aerodynamic performance of a thin wing in close vicinity to the ground. The vortex lattice method (VLM) was utilized to simulate the wing in ground (WIG) effect, which included freely deforming wake elements. The numerical results acquired through the VLM were compared to the experimental results. The experiment entailed varying the ground clearance using the DHMTU (Department of Hydromechanics of the Marine Technical University of Saint Petersburg) wing and the WIG craft model in the wind tunnel. The aero-dynamic influence of the design parameters, such as angles of attack, aspect ratios, taper ratios, and sweep angles were studied and compared between the numerical and experimental results associated with the WIG craft. Both numerical and experimental results suggested that the endplate augments the WIG effect for a small ground clearance. In addition, the vortex lattice method simulated the wake deformation following the wing in the influence of the ground effect.

Experimental Study on Lift Characteristics Considering Moving Ground Effects of Low Aspect Ratio Wings for Wing-In Ground Effect Crafts (이동지면 효과를 고려한 위그선용 저 종횡비 날개의 양력특성에 대한 실험연구)

  • Ahn, Byoung-Kwon;Koo, Sung-Phil;Lew, Jae-Moon;Nho, In-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.381-389
    • /
    • 2011
  • In this study, we are focusing our attention on lift characteristics of the low aspect wings for Wing-In Ground effect crafts (WIG). Experimental measurements at an open-type wind tunnel are carried out and results are comparatively presented. In order to simulate the realistic ground condition in where the WIG craft is flying, moving ground is implemented by a conveyor belt rotating with the same velocity of the inflow. We consider two different wings (NACA0012 and DHMTU section) which have four different aspect ratios (0.5, 1.0, 1.5 and 2.0). Forces acting on the wings are measured and lift characteristics are elaborately investigated for various different conditions. In addition, end-plate effects are estimated. Results are validated by comparing with theoretic solutions of the symmetric airfoil. Present results show that ground effects are differently generated in moving or fixed ground conditions, and hence left characteristics are affected by the ground condition. Consequently, accurate aerodynamic forces acting on the WIG craft are guaranteed in a realistic moving ground condition.