• Title/Summary/Keyword: DHCV

Search Result 11, Processing Time 0.038 seconds

Delayed Hydride Cracking Velocity of CANDU Zr-2.5Nb Tubes in High Temperature Water

  • Kim Young Suk;Cho Sun Young;Im Kyung Soo;Cheong Yong Moo;Kim Sung Soo
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.206-213
    • /
    • 2003
  • This study focuses on an understanding of the environmental effect on delayed hydride cracking velocity (DHCV) of CANDU Zr-2.5Nb tubes. To simulate DHC susceptibility of the Zr-2.5Nb tubes in reactor operating conditions, DHC tests were successfully carried out in pressurized water at 180 and $250^{\circ}C$ using a self-designed autoclave for the first time. Using 17 mm compact tension specimens electorlytically charged to 34 and 60 ppm H, 3 to 7 DHCV data were determined in water at both temperatures and compared to those determined in air that were already confirmed to be valid through a round robin test on DHCV of Zr-2.5Nb tubes sponsored by a IAEA coordinated research program. The pressurized water environment has little effect on DHCV of Zr-2.5Nb tube in water at both temperatures even though DHCV is slightly lower in water than that in air. The lower DHCV of the Zr-2.5Nb tube during short-term tests is discussed in viewpoint of the cooling rate from the peak temperature to the test temperature.

A Correlation of Striation Spacing and DHC Velocity in Zr-2.5Nb Tubes (Zr-2.5Nb 압력관에서 Striation Spacing과 DHCV의 관계)

  • Choi Seung Jun;Ahn Sang Bok;Park Soon Sam;Kim Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1109-1115
    • /
    • 2004
  • The objective of this study is to elucidate what governs delayed hydride cracking (DHC) in Zr-2.5Nb tubes by correlating the striation spacings with DHCV(DHC Velocity). To this end, DHC tests were conducted on the compact tension specimens taken from the Zr-2.5Nb tubes at different temperatures ranging from 100 to $300^{\circ}C$ with a 3 to 6 data set at each test conditions. The compact tension specimens were electrolytically charged with 27 to 87 ppm H before DHC tests. After DHC tests, the striation spacings and DHCV were determined with the increasing the test temperature and yield strength. The striation spacing and DHCV increased as a function of yield $strength^2$ and the temperature. Since the plastic zone size ahead of the crack tip can be represented by ${\sim}(K_{IH}/{\sigma}_{Y})^2$, we conclude that the striation spacing is governed by the plastic zone size which in turn determines a gradient of hydrogen concentration at the crack tip. The relationship between the plastic zone size and the striation spacing was validated through a complimentary experiment using double cantilever beam specimens. Two main factors to govern DHCV of Zr-2.5Nb tubes are concluded to be hydrogen diffusion and a hydrogen concentration gradient at the crack tip that are controlled by temperature and yield strength, respectively. The activation energy of DHCV in the Zr-2.5Nb tubes is discussed on the basis of temperature dependency of hydrogen diffusion and the striation spacing.

열처리가 Zr-2.5Nb압력관 재료의 지체균열전파 특성에 미치는 영향

  • 김인섭;오제용;김영석;국일현
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.765-770
    • /
    • 1995
  • 지체균열전파(DHC)는 중수로 압력관의 수명에 근 영향을 미치는 중요한 현상 중의 하나이다. 본 연구에서는 열처리를 통하여 압력관 재료인 Zr-2,5Nb의 기계적 성질, 집합조직을 변화시켜 각 인자들이 DHC에 미치는 영향을 조사하였다. 그 결과 지체균열전파속도(DHCV)는 항복강도와 경도와 비례한다는 것과 유사한 미세구조와 집합조직을 갖는 Zr-2.5Nb의 경우 항복강도와 Puls의 모델을 이용하여 지체균열전파속도(DHCV)를 예측할 수 있었다. 그리고 secondary cracking이 annealing한 시편들에서는 관찰되었으나 $\beta$열처리 후 급냉한 시편에서는 관찰되지 않았다. 이것의 수소화물 형상의 차이에 의한 것으로 생각된다.

  • PDF

A Study on the Characteristics of Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube with the Heating-up and Heat-treatment (열처리 및 가열방식에 따른 Zr-2.5Nb 압력관의 수소지연균열 특성에 관한 연구)

  • Na, Eun-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • The objective of this study was to obtain a better understanding of the delayed hydride cracking (DHC) of Zr-2.5Nb alloy. The DHC model has some defects: first, it cannot explain why the DHC velocity (DHCV) becomes constant regardless of an applied stress intensity factor, even though the stress gradient is affected by the applied stress intensity factor at the notch tip. Second, it cannot explain why the DHCV has a strong dependence on the method of approaching the test temperature by a cool-down or a heating-up, even under the same stress gradient, and third, it cannot predict any hydride size effect on the DHC velocity. The DHC tests were conducted on Zr-2.5Nb compact tension specimens with the test temperatures reached by a heating-up method and a cool-down method. Crack velocities were measured in hydrided specimens, which were cooled from solution-treatment temperatures at different rates by being furnace-cooled, water-quenched, and liquid nitrogen-quenched. The resulting hydride size, morphology, and distributions were examined by optical metallography. It was found that fast cooling rates, which produce very finely dispersed hydrides, result in higher crack growth rates. This different DHC behavior of the Zr-2.5Nb tube with the cooling rate after a homogenization treatment is due to the precipitation of the $\gamma$-hydrides only in the water-quenched Zr-2.5Nb tube. This experiment will provide supporting evidence that the terminal solid solubility of a dissolution (TSSD) of $\gamma$-hydrides is higher than that of $\delta$-hydrides.

DHC Characteristics of M11 Pressure Tube in Wolsong Unit 1

  • Kim, Sung-Soo;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Delayed hydride cracking (DHC) velocity and threshold stress intensity factor for DHC ($K_{IH}$) tests in the radial direction on M11 pressure tube material in Wolsong unit 1 were carried out following the Atomic Energy Canada Limited (AECL) standard test procedure in order to identify the effect of undercooling on DHCV and to acquire the $K_{IH}$ data. The results showed that $K_{IH}$ 's were 8.8$\pm$0.8 MPa√m in the back offcut and 11.4$\pm$0.7 MPa√m in the front offcut. The fact that $K_{IH}$ in the front offcut is about 20% higher than that in the back offcut is attributed to the microstructural difference between the materials of the front and back ends. $K_{IH}$ 's in M11 pressure tube appeared to be higher than the values from the tubes made of double melted ingot reported earlier. This can be interpreted by the fact that very small amounts of Chlorine (Cl) and Phosphorus (P) are contained in the ingot and that the content of the harmful elements in the M11 pressure tube is equivalent to that made of a quadruple melting process. DHC velocities at 25$0^{\circ}C$ in the front offcut in the radial direction are measured to be 5~8$\times$10$^{-8}$ m/s. The results show that the prior thermal history change the DHC velocity significantly. This effect was confirmed by the experiment of undercooling prior to the DHC tests.DHC tests.

  • PDF

Effect of Hydride of the PHWR Pressure Tube on the LBB Evaluation (중수로 압력관의 수화물이 LBB평가에 미치는 영향)

  • Oh, Dong-Joon;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.610-616
    • /
    • 2004
  • The aim of this study was to investigate the hydride embrittlement when the LBB evaluation was carried out for the integrity of PHWR Pressure Tubes. The transverse tensile and CCT toughness tests were performed at three hydrogen concentrations while the test temperatures were changed (RT to 30$0^{\circ}C$). Both the transverse tensile and the fracture toughness tests showed the hydrogen embitterment clearly at RT but this phenomenon was disappeared while the test temperature arrived at 25$0^{\circ}C$. Using the DHC test results, the CCL and LBB time were calculated and compared. The hydride embrittlement at the LBB evaluation made the LBB time short definedly. If the operating temperature, DHCV and LBB deterministic parameters such as A and m were known, LBB time could be estimated without the calculation of CCL.