• 제목/요약/키워드: DHA(docosahexaenoic acid)

검색결과 276건 처리시간 0.021초

Eicosapentaenoic and Docosahexaenoic Acids Reduce Arachidonic Acid Release by Rat Kidney Microsomes

  • Yeo, Young-Keun;Lim, Ah-Young;Lee, Ji-Yoon;Kim, Hyo-Jung;Farkast, Tihor;Kim, Dae-Gon
    • BMB Reports
    • /
    • 제32권1호
    • /
    • pp.33-38
    • /
    • 1999
  • The effects of eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acids (DHA, 22:6n-3) on the phospholipase $A_2$ ($PLA_2$)-mediated release of arachidonic acid (AA, 20:4n-6) were studied in kidney microsomes from rats fed diets containing sunflower oil (SO) or fish oil (FO) concentrate for 11 months. The amounts of AA released by the endogenous $PLA_2$ enzyme were significantly lower by 38% in the FO, compared to the SO-fed rats (23.2 nmol versus 60.7 nmol AA released/mg protein/h in the FO- and SO-treated groups, respectively). The FO-derived microsomes released less linoleic acid (LA, 18:2n-6) and adrenic acid (22:4n-6), but larger amounts of the n-3 fatty acids, including EPA, DHA, docosapentaenoic acid (DPA, 22:5n-3), and 20:4n-3 than the SO-derived microsomes. A similar replacement of the AA and adrenic acid with the n-3 fatty acids including EPA and DHA was also observed in the microsomal phospholipid fraction from the FO-fed rats relative to the SO-treated group. The results suggest that the $PLA_2$-mediated release of AA is reduced and that of EPA is increased in compensation for AA decline in kidney microsomes from FO-fed rats (0.7 nmol EPA/mg protein/h versus 22.7 nmol EPA/mg protein/h for the SO and FO-treated groups). Replacement of the n-6 with n-3 fatty acids may explain the reduced synthesis of the AA-derived prostaglandins and the concomitant rise in the EPA-derived prostaglandins observed in kidneys of FO-treated rats.

  • PDF

Plasma Phospholipids, including Plasmalogens, after Consumption of Diets Enriched in Long-chain n-3 Fatty Acids

  • Yeo, Young-K.;Kim, Jong-S.;Lee, Jong-R.;Lee, Ji-Y.;Chung, Sang-W.;Kim, Hyo-J.;Horrocks, Lloyd A.;Park, Young-S.
    • BMB Reports
    • /
    • 제33권6호
    • /
    • pp.499-505
    • /
    • 2000
  • The level of long-chain n-3 fatty acids in chicken and pork can be increased by changing the diet of the animals. Increased levels of these essential fatty acids improve cardiovascular health in humans. The purpose of this study was to study the effects of the consumption of pork and chicken enriched in docosahexaenoic acid (DHA) on plasma lipids. The consumption of these products decreased the levels of two cardiovascular risk factors, LDL-cholesterol and triacylglycerols, in the plasma of female college students. The effect on LDL-cholesterol differed from that of fish oil, which does not affect the level of LDL-cholesterol. The proportions of DHA in the triacylglycerols and the glycerophospholipids were increased markedly. The greatest changes in the glycerophospholipids were in the ether types of the ethanolamine glycerophospholipids. Dietary DHA appears to be incorporated preferentially into the plasma ethanolamine plasmalogens, which can act as antioxidants. This agrees with our hypothesis that DHA stimulated the transcription of the genes for peroxisomal enzymes that are required for plasmalogen synthesis.

  • PDF

Dietary intake of n-3 and n-6 polyunsaturated fatty acids in Korean toddlers 12-24 months of age with comparison to the dietary recommendations

  • Kim, Youjin;Kim, Hyesook;Kwon, Oran
    • Nutrition Research and Practice
    • /
    • 제13권4호
    • /
    • pp.344-351
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Adequate dietary fatty acid intake is important for toddlers between 12-24 months of age, as this is a period of dietary transition in conjunction with rapid growth and development; however, actual fatty acid intake during this period seldom has been explored. This study was conducted to assess the intake status of n-3 and n-6 polyunsaturated fatty acids by toddlers during the 12-24-month period using 2010-2015 Korea National Health and Nutrition Examination Survey data. SUBJECTS/METHODS: Twenty-four-hour dietary recall data of 12-24-month-old toddlers (n = 544) was used to estimate the intakes of ${\alpha}$-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), docosahexaenoic acid (DHA; 22:6n-3), linoleic acid (LA; 18:2n-6), and arachidonic acid (AA; 20:4n-6), as well as the major dietary sources of each. The results were compared with the expected intake for exclusively breastfed infants in the first 6 months of life and available dietary recommendations. RESULTS: Mean daily intakes of ALA, EPA, DHA, LA, and AA were 529.9, 22.4, 37.0, 3907.6, and 20.0 mg/day, respectively. Dietary intakes of these fatty acids fell below the expected intake for 0-5-month-old exclusively breastfed infants. In particular, DHA and AA intakes were 4 to 5 times lower. The dietary assessment indicated that the mean intake of essential fatty acids ALA and LA was below the European and the FAO/WHO dietary recommendations, particularly for DHA, which was approximately 30% and 14-16% lower, respectively. The key sources of the essential fatty acids, DHA, and AA were soy (28.2%), fish (97.3%), and animals (53.7%), respectively. CONCLUSIONS: Considering the prevailing view of DHA and AA requirements on early brain development, there remains considerable room for improvement in their intakes in the diets of Korean toddlers. Further studies are warranted to explore how increasing dietary intakes of DHA and AA could benefit brain development during infancy and early childhood.

Ethyl Docosahexaenoate and Its Acidic Form Increase Bone Formation by Induction of Osteoblast Differentiation and Inhibition of Osteoclastogenesis

  • Choi, Bo-Yun;Eun, Jae-Soon;Nepal, Manoj;Lee, Mi-Kyung;Bae, Tae-Sung;Kim, Byung-Il;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.70-76
    • /
    • 2011
  • Bone remodeling is a dynamic process involving a constant balance between osteoclast-induced bone resorption and osteoblast-induced bone formation. Osteoclasts play a crucial homeostatic role in skeletal modeling and remodeling, and destroy bone in many pathological conditions. Previously, we reported that the hexane soluble fraction of Ficus carica inhibited osteoclast differentiation. Poly unsaturated fatty acids, such as ethyl docosahexaenoate (E-DHA), docosahexaenoic acid (DHA), cis-11,14-eicosadienoic acid (EDA) and eicosapentaenoic acid (EPA), were identified from the hexane soluble fraction of Ficus carica. Among them, E-DHA most potently inhibited osteoclastogenesis in RAW264.7 cells. E-DHA reduced the activities of JNK and NF-$\kappa}B$. E-DHA suppressed the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1). Interestingly, DHA increased the activity of alkaline phosphatase and expression of bone morphogenetic protein 2 (BMP2) more than E-DHA in MC3T3-E1 cells, suggesting that DHA may induce osteoblast differentiation. The data suggests that a combination of E-DHA and DHA has potential use in the treatment of diseases involving abnormal bone lysis, such as osteoporosis, rheumatoid arthritis and periodontal bone erosion.

Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: effects on performance, carcass characteristics and tissue fatty acid profile

  • Moran, Colm A.;Morlacchini, Mauro;Keegan, Jason D.;Fusconi, Giorgio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권5호
    • /
    • pp.712-720
    • /
    • 2018
  • Objective: The aim of this experiment was to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA) on pig performance, carcass traits, and the fatty acid composition of pork Longissimus lumborum (LL) and backfat. Methods: A total of 144 Pig Improvement Company (PIC)${\times}$Goland finishing pigs (72 females and 72 castrated males) of mean weight 117.1 (${\pm}13.1$) kg were blocked by sex and body weight and provided with 0% or 1% AURA in isonutritive and isocaloric diets. A total of 24 pens provided 12 replicates per treatment. Animals were weighed on day 0 and 28 with feed and water intake recorded per pen. After 31 days supplementation (28 days of study and 3 days until the slaughtering date) three animals per pen (n = 72) were slaughtered and the LL and backfat thickness, lean meat content and dressing percentage were recorded for the carcasses. The fatty acid (FA) profile of the LL and backfat was established by direct FA methyl ester synthesis. Results: No differences were observed for any performance parameters or carcass traits. Supplementation with AURA resulted in significant changes to the FA profiles of both the LL and backfat with male and female pigs responding differently to supplementation in terms of particular FAs. Overall, pork LL samples had significantly higher eicosapentaenoic acid (p<0.001) and DHA concentrations (p<0.001), and higher omega-3 (n-3) FAs (p<0.001), as well as an increased omega3:omega6 (n-3:n-6) ratio (p = 0.001). For backfat, supplementation resulted in significantly higher amounts of DHA (p<0.001) and n-3 FAs (p<0.001). Conclusion: These results indicate that dietary supplementation with 1% AURA over a 31 day period can increase the FA composition of pork LL and backfat, specifically the DHA, with no major impact on growth performance and carcass traits.

쥐에서 임신기, 수유기 및 이유후에 식이로 섭취한 어유가 뇌조직의 DHA 분포량에 미치는 영향 (Influence of Dietary Supplementation of Fish Oil at Different Life Cycle on the Incorporation of DHA into Brain in Rats)

  • 박기호;박현서
    • Journal of Nutrition and Health
    • /
    • 제31권7호
    • /
    • pp.1100-1111
    • /
    • 1998
  • The incorporation of docosahexaenoic acid(DHA) and arachidonic acid(AA) into brain and liver lipid has been compared in male pups from binth to 10 weeks old by feeding DHA-rich experimental diets or chow diets to dams from pregnancy in rats. The experimental DHA-rich diets contained 7g fish oil and 3g corn oil per 100g diet. There were three experimental groups, FO-I : Dams were fed DHA-rich diet during pregnancy and lactation, and their it pups fed the same diet until 10 weeks old. FO-II Dams fed chow diet during pregnancy and DHA-diet during lactation, and their pups fed the same DHA-diet until 10 weeks. FO-III : Dams fed chow diet during gestation and lactation, and then the pups fed DHA-diet after weaning. The relative % of DHA in hepatic lipid was about 12% with chow diets, but increased rapidly to 20-25% level when DHA-rich diets were supplied after weaning. The AA(%) of FO-III group was relatively high when a chow diet containing higher amount of linoleic acid was given, but there was no significant difference between the groups after feeding on a DHA-rich diet. When the DHA-rich diet was supplied from pregnancy(FO-I), the relative % of DHA in brain lipid was 13.7% at birth and continuously increased to a maximum level(17.2%) at 3-weeks and then was sustained until 5 weeks old. Similar levels of DHA incorporation were observed when DHA-rich diet was supplied from lactation(FO-II). However, the pups of FO-III group showed significantly lower levels of DHA incorporation(72%) at birth. These livels slowly increased and reached an 87% level of FO-I at 10 weeks when the pups ate DHA-rich diets after weaning. The relative % of AA in brain lipid was 10.4% in the FO-I group at birth, which was significantly lower than those of other groups, but there was no significant difference between groups after feeding DHA-rich diets in all groups. The Ah(%) level increased to maximum(11-12%) at 3-weeks and then was slightly reduced and was sustained at about 10% after S-weeks. Total amounts of DNA in the whole brain rapidly reached maximum level at 3-weeks and then was sustained at a constant level after S-weeks. DNA content was not significantly different between groups at birth, but it was significantly higher in FO-I and FO-II groups than in FO-III group at 3-weeks. However, DNA content in FO-III group was continuously increased to 80% level of FO-I at 10-weeks after feeding DHA-rich diet since weaning. In conclusion, the DHA(%) in whole brain was most effectively deposited when DHA-rich diet had been supplied during pregnancy and lactation in rats. However, DHA supplementation after weaning also improved the incorporaton of DHA into brain and content of DNA even though brain development was almost completed, which suggests that DHA supplementation might be necessary to improve brain development in humans during infancy as well as pregnancy and lactation. (Korean J Nutrition 31(7) 1100-1111, 1998)

  • PDF

은 이온 크로마토그래피에 의한 오징어유로부터 eicosapentaenoic acid(EPA) 및 docosahexaenoic acid(DHA)의 분리농축 (Purification of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) Esters from Squid Oil by Silver Ion Chromatography)

  • 경영수;우영련;윤정로
    • 한국식품과학회지
    • /
    • 제36권2호
    • /
    • pp.361-364
    • /
    • 2004
  • 은 이온이 불포화 지방산과의 착화합물을 만든다는 이론에 근거하여 은 이온 교환수지(SER)를 제조하였다. 제조한 SER을 비롯하여 silica gel, 질산은 함침 silica gel, 은 이온 제올라이트를 column 충전물로 사용하여 EPA와 DHA를 분리 농축하고 그 결과를 비교 분석하였다. SER과 silica gel의 9 : 1(w/w)혼합물을 충전물로 사용하였을 때 결과가 가장 좋았으며 이 경우 EPA와 DHA는 각각 27.9%와 49.1%로 농축되었고 수율은 각각 86.0%, 87.3%로 나타났다. SER만을 사용한 경우 EPA와 DHA는 각각 23.5%와 42.1%로 농축되었으며 이는 SER과 silica gel의 혼합 충전물 사용 시 보다 다소 낮은 결과이었다. 질산은 함침 silica gel의 경우 다른 충전물과 비교하여 농축율과 수율이 그다지 좋지 않았으나 EPA와 DHA의 분리 측면에서는 가장 우수한 결과를 나타내었다. SER은 재사용이 가능하고, 사용한 은 이온수지 자체도 쉽게 재생할 수 있을 뿐 아니라 사용한 은 이온도 AgCl 침전이나 $AgNO_3$로 회수가 용이하다는 점에서 다른 농축과정과 비교하여 훨씬 경제적이라 할 수 있다.

Common and differential effects of docosahexaenoic acid and eicosapentaenoic acid on helper T-cell responses and associated pathways

  • Lee, Jaeho;Choi, Yu Ri;Kim, Miso;Park, Jung Mi;Kang, Moonjong;Oh, Jaewon;Lee, Chan Joo;Park, Sungha;Kang, Seok-Min;Manabe, Ichiro;Ann, Soo-jin;Lee, Sang-Hak
    • BMB Reports
    • /
    • 제54권5호
    • /
    • pp.278-283
    • /
    • 2021
  • Our understanding of the differential effects between specific omega-3 fatty acids is incomplete. Here, we aimed to evaluate the effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on T-helper type 1 (Th1) cell responses and identify the pathways associated with these responses. Naïve CD4+ T cells were co-cultured with bone marrow-derived dendritic cells (DCs) in the presence or absence of palmitate (PA), DHA, or EPA. DHA or EPA treatment lowered the number of differentiated IFN-γ-positive cells and inhibited the secretion of IFN-γ, whereas only DHA increased IL-2 and reduced TNF-α secretion. There was reduced expression of MHC II on DCs after DHA or EPA treatment. In the DC-independent model, DHA and EPA reduced Th1 cell differentiation and lowered the cell number. DHA and EPA markedly inhibited IFN-γ secretion, while only EPA reduced TNF-α secretion. Microarray analysis identified pathways involved in inflammation, immunity, metabolism, and cell proliferation. Moreover, DHA and EPA inhibited Th1 cells through the regulation of diverse pathways and genes, including Igf1 and Cpt1a. Our results showed that DHA and EPA had largely comparable inhibitory effects on Th1 cell differentiation. However, each of the fatty acids also had distinct effects on specific cytokine secretion, particularly according to the presence of DCs.

분유의 유지 산화안정성 (Oxidative Stability Fat in Milk Powder)

  • 차준환;최은옥
    • Applied Biological Chemistry
    • /
    • 제38권3호
    • /
    • pp.259-262
    • /
    • 1995
  • DHA(cis-4,7,10,13,16,19-docosahexaenoic acid)가 첨가된 분유와 보통분유의 저장중 지방의 산화안정성을 thiobarbituric acid법에 의해 살펴보았다. 두 종류의 분유는 지역의 슈퍼마켓에서 구입하여 시료병에 $2{\pm}0.05\;g$씩 넣어 암소와 빛의 존재하에서 저장하였다. DHA가 첨가된 분유 지방 산화는 보통 분유보다 증가되었고 특히 빛의 존재하에서 산화는 더욱 촉진되었다. 빛과 DHA를 포함한 불포화지방산은 분유지방을 산화시킴에 있어 상호 역할을 강화시키고 있었다. DABCO (diazabicyclooctane)를 분유에 첨가하면 빛에 노출된 분유의 지방 산화를 줄였는데 이는 분유에서도 일중항산소에 의한 광산화가 발생함을 암시한다. DABCO에 의한 유지방의 산화 억제 정도는 DHA가 첨가된 분유에서 높게 나타났다.

  • PDF