• Title/Summary/Keyword: DGNSS Recapitalization DGPS RSIM

Search Result 3, Processing Time 0.018 seconds

Design of Integrity Monitor Functions for Maritime DGPS RSIM (해양용 DGPS 기준국의 무결성 감시 기능 설계)

  • Seo, Ki-Yeol;Park, Sang-Hyun;Cho, Deuk-Jae;Suh, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.395-400
    • /
    • 2009
  • In order to prepare for the DGNSS recapitalization and implementation of the functions for software based reference station and integrity monitor (RSIM) system, this paper proposes a design of integrity monitor functions of maritime differential GPS RSIM. The most critical functions of the integrity monitor (IM) are to generate and send flags to the reference station (RS) along with system feedback. Firstly, it presents the architecture of software based RSIM, and analyzes the performance standard of integrity monitor for maritime DGPS reference station This paper then designs the functions of integrity monitor for DGPS reference station based on the performance standard. Finally, this paper presents the results of performance analysis for the functionality of integrity monitor using the GNSS simulator. it discusses the study method and its application for the system implementation.

Method of Differential Corrections Using GPS/Galileo Pseudorange Measurement for DGNSS RSIM (DGNSS RSIM을 위한 GPS/Galileo 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.373-378
    • /
    • 2014
  • In order to prepare for recapitalization of differential GNSS (DGNSS) reference station and integrity monitor (RSIM) due to GNSS diversification, this paper focuses on differential correction algorithm using GPS/Galileo pesudorange. The technical standards on operation and broadcast of DGNSS RSIM are described as operation of differential GPS (DGPS) RSIM for conversion of DGNSS RSIM. Usually, in order to get the differential corrections of GNSS pesudorange, the system must know the real positions of satellites and user. Therefore, for calculating the position of Galileo satellites correctly, using the equation for calculating the SV position in Galileo ICD (Interface Control Document), it estimates the SV position based on Ephemeris data obtained from user receiver, and calculates the clock offset of satellite and user receiver, system time offset between GPS and Galileo, then determines the pseudorange corrections of GPS/Galileo. Based on a platform for performance verification connected with GPS/Galileo integrated signal simulator, it compared the PRC (pseudorange correction) errors of GPS and Galileo, analyzed the position errors of DGPS, DGalileo, and DGPS/DGalileo respectively. The proposed method was evaluated according to PRC errors and position accuracy at the simulation platform. When using the DGPS/DGalileo corrections, this paper could confirm that the results met the performance requirements of the RTCM.

Method of BeiDou Pseudorange Correction for Multi-GNSS Augmentation System (멀티 GNSS 보정시스템을 위한 BeiDou 의사거리 보정기법)

  • Seo, Ki-Yeol;Kim, Young-Ki;Jang, Won-Seok;Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2307-2314
    • /
    • 2015
  • This paper focuses on the generation algorithm of BeiDou pseudorange correction (PRC) and simulation based performance verification for design of Differential Global Navigation Satellite System (DGNSS) reference station and integrity monitor (RSIM) in order to prepare for recapitalization of DGNSS. First of all, it discusses the International standard on DGNSS RSIM, based on the interface control document (ICD) for BeiDou, estimates the satellite position using satellite clock offset and user receiver clock offset, and the system time offset between Global Positioning System (GPS) and BeiDou. Using the performance verification platform interfaced with GNSS (GPS/BeiDou) simulator, it calculates the BeiDou pseudorange corrections , compares the results of position accuracy with GPS/DGPS. As the test results, this paper verified to meet the performance of position accuracy for DGNSS RSIM operation required on Radio Technical Commission for Maritime Services (RTCM) standard.