• 제목/요약/키워드: DES Turbulence Model

검색결과 25건 처리시간 0.021초

초음속 유동내 수직분사 유동의 시간 전개에 따른 특성 (Time Evolution Characteristics of Transverse Injection into a Supersonic Crossflow)

  • 원수희;문성영;정인석;최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.343-346
    • /
    • 2008
  • 초음속 주 유동내 연료의 수직분사 유동장에 대한 비정상 3차원 수치해석이 DES 난류 모델을 이용하여 수행되었다. 해석 결과는 시간에 따른 에디의 위치 및 에디 생성 빈도에 대하여 실험과 비교되었다. DES 난류 모델은 에디의 대류 특성을 비교적 정확하게 모사하고 있는 반면에 에디 생성 빈도는 다소 과대 예측하고 있다.

  • PDF

DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 (UNSTEADY THREE-DIMENSIONAL ANALYSIS OF TRANSVERSE FUEL INJECTION INTO A SUPERSONIC CROSSFLOW USING DETACHED EDDY SIMULATION)

  • 원수희;문성영;정인석;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.97-103
    • /
    • 2008
  • Unsteady three-dimensional flowfields generated by transverse fuel injection into a supersonic mainstream are simulated with a DES turbulence model. Comparisons are made with experimental results in term of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the jet vortical structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly overpredict the eddy formation frequency. The jet vortical structures are developed from the competing vortices in the recirculation region of upstream boundary.

  • PDF

DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 (UNSTEADY THREE-DIMENSIONAL ANALYSIS OF TRANSVERSE FUEL INJECTION INTO A SUPERSONIC CROSSFLOW USING DETACHED EDDY SIMULATION)

  • 원수희;문성영;정인석;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.97-103
    • /
    • 2008
  • Unsteady three-dimensional flowfields generated by transverse fuel injection into a supersonic mainstream are simulated with a DES turbulence model. Comparisons are made with experimental results in term of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the jet vortical structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly overpredict the eddy formation frequency. The jet vortical structures are developed from the competing vortices in the recirculation region of upstream boundary.

  • PDF

초음속 유동장에서 기저 유동의 Detached Eddy Simulation (DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM)

  • 신재렬;원수희;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

초음속 유동장에서 기저 유동의 Detached Eddy Simulation (DETACHED EDDY SIMULATION OF BASE FLOW IN SUPERSONIC MAINSTREAM)

  • 신재렬;원수희;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.104-110
    • /
    • 2008
  • Detached Eddy Simulation (DES) is applied to an axisymmetric base flow at supersonic mainstream. DES is a hybrid approach to modeling turbulence that combines the best features of the Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) approaches. In the Reynolds-averaged mode, the model is currently based on either the Spalart-Allmaras (S-A) turbulence model. In the large eddy simulation mode, it is based on the Smagorinski subgrid scale model. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology with less computational cost than that of pure LES and monotone integrated large-eddy simulation (MILES) approaches. The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region, small-eddy motions inside the recirculating region. Comparison of the results shows that it is necessary to resolve approaching boundary layers and free shear-layer velocity profiles from the base edge correctly for the accurate prediction of base flows. The consideration of an empirical constant CDES for a compressible flow analysis may suggest that the optimal value of empirical constant CDES may be larger in the flows with strong compressibility than in incompressible flows.

  • PDF

초음속 기저유동의 우수한 예측을 위한 DES 모델상수의 동적 보정 (Dynamic Correction of DES Model Constant for the Advanced Prediction of Supersonic Base Flow)

  • 신재렬;최정열
    • 한국항공우주학회지
    • /
    • 제38권2호
    • /
    • pp.99-110
    • /
    • 2010
  • 강한 압축성을 갖는 유동의 DES 해석에서, 일반적인 경험상수 $C_{DES}$ 값 0.65를 사용할 경우 경계층 내에서 인위적으로 LES 모드로 수행된다. 본 연구에서는 S-A DES 모델에서 RANS 모드 보호를 위하여 사용되는 난류 길이와 벽거리 비의 분포 함수를 이용한 $C_{DES}$의 동적 결정 방법을 제시하였다. 동적 $C_{DES}$ 결정식을 초음속 기저 유동장에 적용한 결과 다른 모델 상수를 사용한 기존의 연구 결과에 비하여 우수한 예측을 보여주었다.

2차원 후항계단유동에 대한 URANS와 DES의 수치해석 평가 (ASSESSMENT OF URANS AND DES SIMULATIONS FOR TWO-DIMENSIONAL BACKWARD FACING STEP FLOW)

  • 송지수;박승오
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.25-31
    • /
    • 2006
  • A two-dimensional backward facing step flow is simulated by using URANS and Detached Eddy Simulations(DES) approaches. Turbulence models adopted for URANS and DES simulations are Spalart-Allmaras(S-A) model and Shear Stress Transport(SST) model. The target flow with ER=1.125, $Re_H=37,500$ is experimentally studied by Driver & Seegmiller. Various versions of DES have been tested in this paper. Results of the simulations are compared with the experimental data available to evaluate the merits and demerits of URANS and several versions of DES. URANS simulation converges to a steady state and hence unsteady characteristics are not featured. DES simulations in general successfully mimic large scale structures and oscillation characteristics of the flow.

DES법을 이용한 SUBOFF 잠수함 모델 주위 유동 수치해석 연구 (Numerical Simulation of the Flow Around the SUBOFF Submarine Model Using a DES Method)

  • 서성부;박일룡
    • 대한조선학회논문집
    • /
    • 제58권2호
    • /
    • pp.73-83
    • /
    • 2021
  • In this study, the numerical investigation of the flow around the SUBOFF submarine model is performed by using the Detached Eddy Simulation (DES) method which is developed based on the SST k-ω turbulence model. At the DES analysis level, complex vortical flows around the submarine model are caused mainly by the vortices due to the appendages and their interactions with the flows from the hull boundary layer and other appendages. The complexity and scale of the vortical flow obtained from the numerical simulations are highly dependent on the grid. The computed local flow properties of the submarine model are compared with the available experimental data showing a good agreement. The DES analysis more reasonably estimates the physical phenomena inherent in the experimental result in a low radius of the propeller plane where vortical flows smaller than the RANS scale are dominant.

DES를 이용한 초음속 유동내 수직 연료분사 유동의 난류 연소 해석 (Turbulent Combustion Dynamics of Transverse Fuel Injection into a Supersonic Crossflow using DES)

  • 원수희;정인석;최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.334-337
    • /
    • 2008
  • 초음속 주 유동내 연료의 수직분사에 의한 비정상 반응 유동장에 대한 3차원 수치해석이 DES 난류 모델과 상세 화학반응 모델을 이용하여 수행되었다. 난류 반응 유동의 물리적 현상을 이해하기 위하여 해석 및 실험 결과를 비교하였다. 계산에 의해 구해진 OH 분포는 실험의 OH-PLIF 결과를 잘 모사하고 있다. 반면, 점화 지연 시간은 계산과 실험 사이에 차이를 보이고 있으며, 이는 실험적 계측의 한계에 기인하는 것으로 생각된다.

  • PDF

Multiscale finite element method applied to detached-eddy simulation for computational wind engineering

  • Zhang, Yue;Khurram, Rooh A.;Habashi, Wagdi G.
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.1-19
    • /
    • 2013
  • A multiscale finite element method is applied to the Spalart-Allmaras turbulence model based detached-eddy simulation (DES). The multiscale arises from a decomposition of the scalar field into coarse (resolved) and fine (unresolved) scales. It corrects the lack of stability of the standard Galerkin formulation by modeling the scales that cannot be resolved by a given spatial discretization. The stabilization terms appear naturally and the resulting formulation provides effective stabilization in turbulent computations, where reaction-dominated effects strongly influence near-wall predictions. The multiscale DES is applied in the context of high-Reynolds flow over the Commonwealth Advisory Aeronautical Council (CAARC) standard tall building model, for both uniform and turbulent inflows. Time-averaged pressure coefficients on the exterior walls are compared with experiments and it is demonstrated that DES is able to resolve the turbulent features of the flow and accurately predict the surface pressure distributions under atmospheric boundary layer flows.