• Title/Summary/Keyword: DES 난류 모델

Search Result 18, Processing Time 0.019 seconds

Turbulent Combustion Dynamics of Transverse Fuel Injection into a Supersonic Crossflow using DES (DES를 이용한 초음속 유동내 수직 연료분사 유동의 난류 연소 해석)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.334-337
    • /
    • 2008
  • Three-dimensional unsteady reacting flowfield generated by transverse hydrogen injection into a supersonic mainstream are numerically investigated using DES and finite-rate chemistry model. Comparisons are made with experimental results to investigate the turbulent reacting flow physics. The numerical OH distribution describes well the experimental OH-PLIF result, while the numerical ignition delay time shows some disparity due to the restricted available experimental data.

  • PDF

Time Evolution Characteristics of Transverse Injection into a Supersonic Crossflow (초음속 유동내 수직분사 유동의 시간 전개에 따른 특성)

  • Won, Su-Hee;Moon, Seong-Young;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.343-346
    • /
    • 2008
  • Unsteady 3D flowfields generated by transverse fuel injection into a supersonic mainstream are simulated with a DES turbulence model. Comparisons are made with experimental results in term of the temporal eddy position and eddy formation frequency. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly overpredict the eddy formation frequency.

  • PDF

Dynamic Correction of DES Model Constant for the Advanced Prediction of Supersonic Base Flow (초음속 기저유동의 우수한 예측을 위한 DES 모델상수의 동적 보정)

  • Shin, Jae-Ryul;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.99-110
    • /
    • 2010
  • The DES analysis of strong compressibility flow, LES mode is intentionally performed in boundary layer with the conventional empirical constant $C_{DES}$ value of 0.65. In this study, an expression is suggested to determine the $C_{DES}$ value dynamically by using a distribution function of the ratio of turbulence length scale and wall distance which is used in S-A DDES model for RANS mode protection. The application of the dynamic $C_{DES}$ presents better prediction than previous results those used constant but different $C_{DES}$ values.

Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part II : Reacting Flowfield (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part II : 반응 유동장)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.879-888
    • /
    • 2009
  • Unsteady three-dimensional reacting flowfield generated by transverse hydrogen injection into a supersonic mainstream is numerically investigated using DES and finite-rate chemistry model. Comparisons are made with experimental results to investigate the turbulent reacting flow physics. The numerical OH distribution describes well the experimental OH-PLIF result, while the numerical ignition delay time shows some disparity due to the restricted available experimental data. The intermittency phenomena are identified by the comparative analysis between RANS and DES. Those effects are also quantified by the temperature distributions along streamlines and superimposed OH mass fraction along with time.

Unsteady Three-Dimensional Analysis of Transverse Fuel Injection into a Supersonic Crossflow using Detached Eddy Simulation Part I : Non-Reacting Flowfield (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석 Part I : 비반응 유동장)

  • Won, Su-Hee;Jeung, In-Seuck;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.863-878
    • /
    • 2009
  • Unsteady three-dimensional flowfield generated by transverse fuel injection into a supersonic mainstream is simulated with a DES turbulence model. Comparisons are made with experimental results in terms of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the large eddy structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly over-predict the eddy formation frequency. The large eddy structures are generated as the counter-rotating vortices are detached alternately in the upstream recirculation region.

Detached Eddy Simulation of Base Flow in Supersonic Mainstream (초음속 유동에서 기저유동의 Detached Eddy Simulation)

  • Shin, Jae-Ryul;Moon, Sung-Young;Won, Su-Hee;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.955-966
    • /
    • 2009
  • DES method is applied to an axisymmetric base flow at supersonic mainstream. The model is based on the Spalart-Allmaras (S-A) turbulence model in the RANS mode, and is based on the subgrid scale model in the Large-eddy simulation (LES) mode. Accurate predictions of the base flowfield and base pressure are successfully achieved by using the DES methodology which is less expensive than LES. Flow properties at the edge of base, such as boundary layer thickness, momentum thickness and skin fraction are compared with Dutton et al [experimental data to proper prediction of base flowfiled. From the present results, The DES accurately resolves the physics of unsteady turbulent motions, such as shear layer rollup, large-eddy motions in the downstream region and small eddy motions inside the recirculating region. Moreover, The present results of using an empirical constant $C_{DES}$ of 1.2 shows good agreement with experimental data than conventional empirical constant $C_{DES}$ of 0.65.

Hybrid RANS/LES simulation of Base-Bleed in Supersonic Flows (초음속 유동장에서 기저 분출 유동의 대와류 난류 모사)

  • Shin, Jae-Ryul;Won, Su-Hee;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.332-335
    • /
    • 2008
  • The purpose of this study is analysis of flow field where is around of injector of supersonic combustor which is bluff-body stabilized flame and hyper-mixer type of supersonic combustor injector by using hydrogen or hydrocarbon fuel. Various schemes are evaluated to supersonic backward step flow filed with massive separation region in validation step. Compounded scheme of 5th-order TVD-MUSCL, Roe FDS, S-A DES/DDES has a good performance in base and base-bleed flow.

  • PDF

A hybrid RANS/LES Investigation of Backward-facing Step Flow (후방계단흐름의 하이브리드 RANS/LES 연구)

  • Yoo, Donggeun;Paik, Joongcheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.105-105
    • /
    • 2019
  • 보나 여수로와 같은 수공구조물의 주변에서 발생하는 흐름 거동은 구조물 모서리에서 발생하는 흐름분리(flow separation)와 이에 따른 전단층(shear layer)과 재순환(recirculation) 흐름 영역의 발달 그리고 분리된 흐름의 재부착(reattachment)이 특징이다. 공학적으로 난류의 해석에 있어서 이러한 흐름 거동들을 정확하게 예측하는 것은 수공구조물 설계에 있어서 중요하다. 이 연구에서는 흐름 분리와 재순환 영역의 발달 그리고 흐름 재부착을 포함하는 후방계단(backward-facing step) 흐름을 155,000의 레이놀즈수 조건에서 하이브리드 RANS/LES 모델을 적용하여 해석결과를 평가한다. 하이브리드 모델로는 벽에 인접한 격자의 해상도에 상대적으로 민감하지 않은 SST(shear-stress transport) 난류 모델을 이용하는 DES(detached-eddy simulation) 기법을 적용하였다. 계단 높이가 h인 계산영역은 흐름방향 길이가 34h, 높이는 계단 상류와 하류에서 각각 1h와 2h 그리고 폭은 $2{\pi}$이다. 계단은 상류단으로부터 10h 하류부 지점에 위치한다. 경계조건으로 상부와 하부 벽면에 대해서는 비활조건을 적용한다. 상류부 수로에서 완전 발달한 흐름을 재현하기 위해서 유입경계조건은 유입부 하류 $2{\pi}h$ 지점에서 계산된 유속과 난류량을 매핑(mapping)기법을 이용하여 반복적으로 적용한다. 총 3.1백만개와 7.3백만개의 셀로 계산영역을 구현한 두 개의 계산격자 그리고 약 3.1백만개의 셀을 이용했지만 벽면 근처에서의 격자 구성을 다른 방식으로 설정한 두 가지 격자를 이용하여 격자 해상도가 DES 수치해석 결과에 미치는 영향을 분석하였다. 수치해석결과는 본 연구에서 상류단 조건으로 적용한 매핑기법이 대상 수로에서 완전 발달한 흐름을 잘 재현함을 보여주며, 합리적인 DES 해석 결과를 얻기 위해서는 벽에 수직한 방향으로 적절한 격자의 해상도와 분포가 필요함을 보여준다.

  • PDF

Numerical Simulation of the Flow Around the SUBOFF Submarine Model Using a DES Method (DES법을 이용한 SUBOFF 잠수함 모델 주위 유동 수치해석 연구)

  • Suh, Sung-Bu;Park, Il-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.73-83
    • /
    • 2021
  • In this study, the numerical investigation of the flow around the SUBOFF submarine model is performed by using the Detached Eddy Simulation (DES) method which is developed based on the SST k-ω turbulence model. At the DES analysis level, complex vortical flows around the submarine model are caused mainly by the vortices due to the appendages and their interactions with the flows from the hull boundary layer and other appendages. The complexity and scale of the vortical flow obtained from the numerical simulations are highly dependent on the grid. The computed local flow properties of the submarine model are compared with the available experimental data showing a good agreement. The DES analysis more reasonably estimates the physical phenomena inherent in the experimental result in a low radius of the propeller plane where vortical flows smaller than the RANS scale are dominant.

UNSTEADY THREE-DIMENSIONAL ANALYSIS OF TRANSVERSE FUEL INJECTION INTO A SUPERSONIC CROSSFLOW USING DETACHED EDDY SIMULATION (DES를 이용한 초음속 유동내 수직 연료분사 유동의 비정상 3차원 해석)

  • Won, S.H.;Moon, S.Y.;Jeung, I.S;Choi, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.97-103
    • /
    • 2008
  • Unsteady three-dimensional flowfields generated by transverse fuel injection into a supersonic mainstream are simulated with a DES turbulence model. Comparisons are made with experimental results in term of the temporal eddy position and eddy formation frequency. The vorticity field around the jet exit is also analyzed to understand the formation mechanism of the jet vortical structures. Results indicate that the DES model correctly predicts the convection characteristics of the large scale eddies. However, it is also observed that the numerical results slightly overpredict the eddy formation frequency. The jet vortical structures are developed from the competing vortices in the recirculation region of upstream boundary.

  • PDF