• Title/Summary/Keyword: DEM analysis

Search Result 667, Processing Time 0.027 seconds

A Study on Automated Lineament Extraction with Respect to Spatial Resolution of Digital Elevation Model (수치표고모형 공간해상도에 따른 선구조 자동 추출 연구)

  • Park, Seo-Woo;Kim, Geon-Il;Shin, Jin-Ho;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.439-450
    • /
    • 2018
  • The lineament is a linear or curved terrain element to discriminate adjacent geological structures in each other. It has been widely used for analysis of geology, mineral exploration, natural disasters, and earthquake, etc. In the past, the lineament has been extracted using cartographic map or field survey. However, it is possible to extract more efficiently the lineament for a very wide area thanks to development of remote sensing technique. Remotely sensed observation by aircraft, satellite, or digital elevation model (DEM) has been used for visual recognition for manual lineament extraction. Automatic approaches using computer science have been proposed to extract lineament more objectively. In this study, we evaluate the characteristics of lineament which is automatically extracted with respect to difference of spatial resolution of DEM. We utilized two types of DEM: one is Shuttle Radar Topography Mission (SRTM) with spatial resolution of about 90 m (3 arc sec), and the other is the latest world DEM of TerraSAR-X add-on for Global DEM with 12 m spatial resolution. In addition, a global DEM was resampled to produce a DEM with a spatial resolution of 30 m (1 arc sec). The shaded relief map was constructed considering various sun elevation and solar azimuth angle. In order to extract lineament automatically, we used the LINE module in PCI Geomatica software. We found that predominant direction of the extracted lineament is about $N15-25^{\circ}E$ (NNE), regardless of spatial resolution of DEM. However, more fine and detailed lineament were extracted using higher spatial resolution of DEM. The result shows that the lineament density is proportional to the spatial resolution of DEM. Thus, the DEM with appropriate spatial resolution should be selected according to the purpose of the study.

A Study on Automatic Detection of the Gross Errors on DSM Using Stereo Image Analysis (스테레오 영상분석에 기반한 DSM 과대오차영역의 자동검출기법연구)

  • Jeong, Jaehoon;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.487-497
    • /
    • 2013
  • In this paper, a method of using high resolution stereo images is proposed to efficiently detect DSM errors. Automatically generated DSMs from stereo matching can be a useful solution to acquire DSM data in various aspects but they may include many gross errors coming from automatic processing. Therefore, a method to detect the gross errors on DSM is required for efficient DSM update. In this paper, stereo analysis using high resolution stereo images was investigated to represent reliability of DSM grids. The analysis enabled automatic detection of the gross errors which greatly influenced DSM quality. We used the reference DSM to assess reliability of our proposed method. We confirmed from experimental results that our method can be a valuable DSM errors analysis for efficient DSM correction. Our method is useful to analyze and improve DSM accuracy for various types of DSM and DEM. It is expected that our approach can be exploited for achievement of reliable DSM and DEM.

Comparative Analysis of Terrain Slope Using Digital Map, LiDAR Data (수치지형도와 LiDAR 데이터를 이용한 지형경사도 비교분석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Min, Kwan-Sik;Rhee, Won-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.3-9
    • /
    • 2007
  • Recently, the efforts of systematic understanding and utilization of geographic phenomenon for human life as a important factor among activity of mankind are increasing. It is necessary to express topography connected with space. Especially, the technology of geographic analysis using DEM can supply the information rapidly and accurately about elevation and terrain slope of the subject area under the necessity of high 3D quality geographic information. In this study, creating more precise DEM derived from LiDAR data, quantitative analysis on the subject area about elevation and terrain slope is done under comparison with Digital Topographic map Scale 1:1000. LiDAR data is more detailed than Digital Topographic map to express the elevation of the subject area ($39.89{\sim}77.48m$), and terrain slope by analysis using DEM derived from LiDAR data come out minutely about 90%. It can be concluded that the LiDAR data is very applicable and accurate for 3D topographic terrain slope analysis.

  • PDF

A Study on Landscape Management Techniques of Cultural Heritage Designated Area Using 3D Mapping Method (3D맵핑을 이용한 문화재 지정구역 경관관리기법 연구)

  • Kim, Jae-Ung;Lee, Won-Ho;Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.1
    • /
    • pp.97-108
    • /
    • 2018
  • The purpose of this study is to propose the construction of a visibility analysis model, which is the basis of the analysis for landscape management on the heritage sites such as historic villages and scenic sites. Results of the visibility analysis using DEM and the visibility analysis of DSM based on 3D mapping data are compared as follows: Precision level of the extracted data was confirmed to be less than 6.5cm, based on RTK survey results produced by constructing orthoimage data and DSM from the digital data of 2cm-class GSD(Ground Sample Distance) obtained by using a small UAV(Unmanned Aerial Vehicle). As a result of comparing the visibility analysis data of Digital Surface Model (DSM) using a small UAV with Digital Elevation Model(DEM) applying the height of the building to the Digital Topographic Map, it was confirmed that more realistic visibility analysis can be accomplished by applying DSM, as the structures such as fences, trees, and houses are reflected in the topographic data. The visibility analysis model using the 3D mapping technique can efficiently obtain the constantly changing topographic information when needed, by immediately constructing the data by utilizing a small UAV. It seems to be possible to propose a reasonable analysis result for preservation management such as landscape evaluation of cultural property.

Numerical Study of Face Plate-Type EPB Shield TBM by Discrete Element Method (개별요소법을 활용한 면판형 토압식 쉴드TBM의 수치해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Choi, Soon-Wook;Park, Byungkwan;Kang, Tae-Ho;Sim, Jung Kil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.163-176
    • /
    • 2017
  • The Discrete Element Method (DEM) has been widely used in civil engineering as well as various industrial fields to simulate granular materials. In this study, DEM was adopted to predict the performance of the face plate-type earth pressure balance (EPB) shield TBM (Tunnel Boring Machine). An analysis of the TBM excavation performance was conducted according to two pre-defined excavation conditions with the different rotation speeds per minute (RPM) of the cutterhead. The TBM model which was used in this study has a 6.64 m of diameter and six spokes. Also, 37 precutters and 98 scrapers at an each spoke were modeled with a real-scale specification. From the analysis, compressive forces at the cutterhead face, shield and cutting tools, resistant torques at the cutterhead face, muck discharge rate and accumulated muck discharge by the screw auger were measured and compared.

Analysis of Terrain by LIDAR Data (LiDAR 자료에 의한 지형해석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Min, Kwan-Sik;We, Gwang-Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.389-397
    • /
    • 2006
  • The purpose of the present paper is to offer an analysis of LiDAR data processing and three dimensional terrain for Geographic Information System (CIS) applications. Generally, LiDAR survey is the method which obtains quantitative and qualitative information of the terrain using airborne laser scanning (ALS). We will get a most topographic data at a Triangular Irregular Network (TIN), Digital Surface Model (DSM) and Digital Elevation Model (DEM) using LiDAR data. We examined many factors such as visibility, hillshade, aspect and slope using DEM and DSM. The analyzing results obtained from each item are thought to be regarded as leading factors in the terrain analysis. It is to be hoped that LiDAR survey will contribute a new approach to the terrain analysis.

Effects of Stand Growth on Viewshed Analysis Using GIS (임분의 생장효과가 GIS 응용 가시권 분석에 미치는 영향 분석)

  • Jang, Kwang-Min;Song, Jung-Eun;Seol, A-Ra;Han, Hee;Chung, Joo-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.11-20
    • /
    • 2010
  • In this study, the effects of stand height growth on GIS-based viewshed analysis were investigated. DSM was created by combining stand height layers on DEM using map algebra functions. In developing the tree height layers, the digital forest-type maps, forest site maps and stand yield tables of Korea Forest Research Institute were used. The time horizon for viewshed analysis were 40 years. Two viewpoints in crossings of downtown for viewshed analyses were chosen using a projective mapping technique. The effects of tree height growth over time on visibility were measured in terms of the depth of blind areas and the area of visible regions. The results of viewshed analyses show that 17% of visible regions is reduced when we use DSM instead of DEM. As the tree height grows, the visibility gets worse and worse and the depth of blind area increases.

GIS-Based Analysis of the Debris Flow Occurrence Possibility Using an Airborne LiDAR DEM around Pyeongchang-Gun, Kangwon-Do (항공라이다 DEM을 이용한 강원도 평창군 일원의 GIS 기반의 토석류 발생가능성 분석)

  • Lee, In-Ji;Lee, Dong-Ha;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.50-66
    • /
    • 2010
  • In this study, we performed a GIS-based debris flow simulation using the high-resolution airborne LiDAR DEM in order to establish the effective and resonable debris prevention plans in Korea. To do so, we set a study area to an specific region over Pyeochang-gun in Kangwon-do which showed the extreme rugged distribution of topography and simulated a possibility of debris flow occurrence in this area using a GIS-based numerical simulation program which was developed by applying the finite difference method. After that, we also performed the debris flow simulation by SINMAP and geomorphic analysis method in the same region and compared each result with that of GIS-based debris simulation for verifying the reliability.

2-D Inundation Analysis According to Post-Spacing Density of DEMs from LiDAR Using GIS (GIS를 활용한 LiDAR 자료의 밀도에 따른 2차원 침수해석)

  • Ha, Chang-Yong;Han, Kun-Yeun;Cho, Wan-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.74-88
    • /
    • 2010
  • In this study, the points of LiDAR were modified in order to generate various DEM resolutions by applying LiDAR data in Ulsan. Since the LiDAR data have points with 1m intervals, the number of points for each resolution was modified to the size of 1, 5, 10, 30, 50, 100m by uniformly eliminating the points. A runoff analysis was performed on Taehwa river and its tributary, Dongcheon, with 200 year rainfall exceedance probability. 2-dimensional inundation analysis was performed based on the density of LiDAR data using FLUMEN, which was used to establish domestic flood risk map. Once DEM data obtained from LiDAR survey are used, it is expected that the study results can be used as data in determining optimal grid spacing, which is economical, effective and accurate in establishing flood defence plans including the creation of flood risk map.

Analysis of Erosion and Deposition by Debris-flow with LiDAR (지상 LiDAR를 이용한 토석류 발생에 의한 침식, 퇴적량 측정)

  • Jun, Byong-Hee;Jang, Chang-Deok;Kim, Nam-Gyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.54-63
    • /
    • 2010
  • The intensive rainfall over 455 mm occurred between on 9 to 14 July 2009 triggered debris flows around the mountain area in Jecheon County. We mapped the debris flow area and estimated the debris flow volume using a high resolution digital elevation model (DEM) generated respectively from terrestrial LiDAR (Light Detection And Ranging) and topographic maps. For the LiDAR measurement, the terrestrial laser scanning system RIEGL LMS-Z390i which is equipped with GPS system and high-resolution digital camera were used. After the clipping and filtering, the point data generated by LiDAR scanning were overlapped with digital map and produced DEM after debris flow. The comparison between digital map and LiDAR scanning result showed the erosion and deposition volumes of about $17,586m^3$ and $7,520m^3$, respectively. The LiDAR data allowed comprehensive investigation of the morphological features present along the sliding surface and in the deposit areas.