• Title/Summary/Keyword: DEM analysis

Search Result 667, Processing Time 0.03 seconds

An Analysis of Terrain Slope and Drainage Basin Area by DEM Grid Size (DEM 격자크기에 따른 지형경사와 배수유역 면적의 분석)

  • 양인태;김연준;유영걸
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.303-311
    • /
    • 2002
  • Recently, the research that analyze topography parameters that need in hydrology analysis using GIS techniques is achieved. DEM that is used in topography analysis can be constructed effectively using contour data of digital map. Therefore, DEM's applicability is increasing gradually in several fields. In this study, DEM of 20∼l00m grid size was applied PYONGCHANG river and JUBANG river basin to analyze what effect DEM grid size causes about slope and drainage watershed at topography parameter extraction. This study drew a regression equation about slope change by DEM grid size. As a result, according as DEM grid size increases, slope decreases, and basin area could know that is not change almost.

Analysis Possibility of the Landslide Occurrence in Kangwon-Do using a High-resolution LiDAR-derived DEM (고해상도 항공라이다 DEM 해석을 통한 강원도 일원의 산사태 예측 가능성 분석)

  • Lee, Dong-Ha;Kim, Young-Seup;Suh, Yong-Cheol
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.381-387
    • /
    • 2009
  • This study investigates the use of geomorphic analysis results obtained from high-resolution LiDAR-derived DEM. The results of analysis, slope angle and eigenvalue ratio (ER) were derived from the DEM for 3 landslide and 1 non-landslide occurrence area. Results of this study highlighted the importance of geomorphic analysis in characterizing landslide feature as well as the various contents in their future occurrence and activity. The relationship between the results of geomorphic analysis and landslides are well expressed in this paper.

  • PDF

Analysis of Flowaccumulation Threshold Value to Extract Stream Network from DEM (DEM으로부터 하천망 추출을 위한 흐름누적 임계값의 분석)

  • 김연준;양인태
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.255-264
    • /
    • 2002
  • The topography is recognized as an important factor in determining the streamflow response of watershed to precipitation. In watershed analysis, stream networks are very important parameters. Each DEM grid size and flowaccumulation threshold value of drainage accumulation matrix have influence on stream networks extracted by using grid DEM. Therefore, stream networks extracted from DEM varies with each DEM grid size and flowaccumulation threshold value. Generally, small threshold values will generate more detailed stream network with higher drainage density High threshold values will generate coarser stream networks. In this paper, total stream length in the study area was used to calculate the flowaccumulation threshold value by each DEM grid size. Stream network was derived by each DEM grid size, which is applied flowaccumulation threshold value. Regression equation was derived by correlation between flowaccumulation threshold value and each DEM grid size.

The Measurements of Data Accuracy and Error Detection in DEM using GRASS and Arc/Info (GRASS와 Arc/Info를 이용한 DEM 데이터의 정확도와 에러 측정)

  • Cho, Sung-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.1
    • /
    • pp.3-7
    • /
    • 1998
  • The issue of data accuracy brings a different perspective to the issue of GIS modeling, calls into a question the usefulness of data models such as DEM. Accuracy can be determined by randomly checking positional and attribute accuracy within a GIS data layer. With the increasing availability of DEM and the software capable of processing them, it is worthwhile to call attention for data accuracy and error analysis as GIS application depends on the priori established spatial data. The purpose of this paper was to investigate methods for data accuracy measurement and error detection methodology with two types of DEM's: 1 to 24,000 and 1 to 250,000 DEM released by U.S. Geological Survey. Another emphasis was given to the development of methodology for processing DEM's to create Arc/Info and GRASS layers. Data accuracy analysis with DEM was applied to a 250 sq.km area and an error was detected at a scale of 1:24,000 DEM. There were two possible reasons for this error: gross errors and blunders.

Sensitivity Analysis of GIUH Model Applied to DEM Resolutions and Threshold Areas (GIUH적용을 위한 DEM 격자크기 및 Threshold Area의 민감도분석)

  • Cho, Hyo-Seob;Jung, Kwan-Sue;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.799-810
    • /
    • 2003
  • Hydrologic models generally require land surface analysis to different topographic parameters defined as direct or indirect input variables to the model. Specially GIS supply the these parameters from digital data set of land surface The sensitivity analysis to DEM(Digital Elevation Model) resolution and the threshold area are of GIS extracted digital data set applied GIUH(Geomorphological Instantaneous Unit Hydrograph)model is investigated. Also it is compared the responses of GIUH model as input data of stream networks from digital data set(blue line) of NGIS and those extracted from DEM of various grid sizes. The results shows that the GIUH model is significantly affected by the DEM resolution and threshold area. According to the results, DEM grid size is suitable from 25m to 50m. Also threshold area is in the range of 30%∼50% for exceedance probability.

Measures to improve the DEM using SAR images in the river corridor (합성개구레이더 영상을 이용한 하천내 DEM 개선 방안)

  • Kim, Joo-Hun;Noh, Hui-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.913-922
    • /
    • 2022
  • The purpose of this research is to propose the measurement of improving DEM by using the water surface range of SAR image analysis for river corridors and to suggest the construction of satellite-based 3D river spatial information of inaccessible regions such as North Korea. For this research, it has been progressed from the accessible area, watershed of Namgang river, the branch of Nakdonggang river. The satellite image was collected from SAR satellite image data for a year in 2021 which was provided by ESA from Sentinel-1A/B data and extracted from the seasonal water surface area. Ground gauge water level was collected from hourly intervals data by WAMIS. The DEM was improved by analysis of the river altitude of water surface area change by the combination of the ground water level of minimum to maximum water surface area data extracted from SAR image analysis. After the improvement of DEM, the altitude of the river varied that it is defined to comprise more natural form of river DEM than the existing DEM. The correction validation of improvement DEM was necessary in field survey elevation data; however, the correction validation was not progressed due to the absence of the data. Although, the purpose of this research is to provide the improvement of DEM by using the analyzed water surface by existing DEM data and SAR image analysis. After the progression of additional correction validation research, we would plan to examine the application in other places and to progress the additional methodological research to apply in inaccessible and unmeasured area including the North Korea.

Accuracy Evaluation of ASTER DEM, SRTM DEM using Digital Topographic Map (1:5000 수치지형도를 이용한 ASTER DEM과 SRTM DEM의 구축정확도 평가)

  • Kang, Kyung-Ho;Kim, Chang-Jae;Sohn, Hong-Gyoo;Lee, Won-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.169-178
    • /
    • 2010
  • The main purpose of this study is to evaluate the feasibility and the accuracy of ASTER DEM and SRTM DEM covering 99% of the earth surface using large-scale Digital Topographic Map in mountainous area(Sokcho), mixed area(Jinan, mountainous area and even land area) and even land area(Anyang). We made DEM using contour lines of 1:5,000 Digital Topographic Map of study area and also acquired ASTER DEM and SRTM DEM of their corresponding area. In order to verify accuracy of DEM, this study compared ASTER DEM and SRTM DEM data using 15m resolution DEM generated from contour lines of Digital Topographic Map as basis for each study area. To evaluate the accuracy of ASTER and SRTM DEM data, statistical such as RMSE and correlation were calculated and histogram and scatter plot were drawn. The analysis result shows that, both ASTER DEM and SRTM DEM have high accuracy but in aspects of future availability, ASTER DEM covering larger areas bas relatively more potential than SRTM data.

Research for Generation of Accurate DEM using High Resolution Satellite Image and Analysis of Accuracy (고해상도 위성영상을 이용한 정밀 DEM 생성 및 정확도 분석에 관한 연구)

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Kim, Tae-Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.359-365
    • /
    • 2008
  • This paper focused on generation of more accurate DEM and analysis of accuracy. For this, we applied suitable sensor modeling technique for each satellite image and automatic pyramid matching using image pyramid was applied. Matching algorithm based on epipolarity and scene geometry also was applied for stereo matching. IKONOS, Quickbird, SPOT-5, Kompsat-2 were used for experiments. In particular, we applied orbit-attitude sensor modeling technique for Kompsat-2 and performed DEM generation successfully. All DEM generated show good quality. Assessment was carried out using USGS DTED and we also compared between DEM generated in this research and DEM generated from common software. All DEM had $9m{\sim}12m$ Mean Absolute Error and $13m{\sim}16m$ RMS Error. Experimental results show that the DEMs of good performance which is similar to or better than result of DEMs generated from common software.

DEM generation of Rock Slope using Laser Scanning and Digital Stereo Photogrammetry (3D laser scanning 및 수치사진측량을 이용한 암반 사면의 DEM 추출 기법)

  • 정창엽;박형동
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.207-214
    • /
    • 2003
  • To obtain Digital Elevation Model(DEM) from an exposed rock mass, techniques such as laser scanning and digital stereo photogrammetric technique are recently applied. We have obtained the DEM of the rock slope using above techniques in this study, and examined a suitability and improvement of the photogrammetry for the rock slope by overlapping the DEM. This study can be applied to the measurement of fracture orientations, the prediction of rock joint network, and the analysis on the change of the rock slope.

Deformation monitoring of Daejeon City using ALOS-1 PALSAR - Comparing the results by PSInSAR and SqueeSAR - (ALOS-1 PALSAR 영상을 이용한 대전지역 변위 관측 - PSInSAR와 SqueeSAR 분석 결과 비교 -)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.567-577
    • /
    • 2016
  • SqueeSAR is a new technique to combine Persistent Scatterer (PS) and Distributed Scatterer (DS) for deformation monitoring. Although many PSs are available in urban areas, SqueeSAR analysis can be beneficial to increase the PS density in not only natural targets but also smooth surfaces in urban environment. The height of each targets is generally required to remove topographic phase in interferometric SAR processing. The result of PSInSAR analysis to use PS only is not affected by DEM resolution because the height error of initial input DEM at each PSs is precisely compensated in PS processing chain. On the contrary, SqueeSAR can be affected by DEM resolution and precision since it includes spatial average filtering for DS targets to increase a signal-to-noise ratio (SNR). In this study we observe the effect of DEM resolution on deformation measurement by PSInSAR and SqueeSAR. With ALOS-1 PALSAR L-band data, acquired over Daejeon city, Korea, two different DEM data are used in InSAR processing for comparison: 1 m LIDAR DEM and SRTM 1-arc (~30 m) DEM. As expected the results of PSInSAR analysis show almost same results independently of the kind of DEM, while the results of SqueeSAR analysis show the improvement in quality of the time-series in case of 1-m LIDAR DSM. The density of InSAR measurement points was also improved about five times more than the PSInSAR analysis.