• Title/Summary/Keyword: DEM Construction

Search Result 175, Processing Time 0.025 seconds

Tribology Performance Analysis by Surface Patterns of PLA Printing Samples Using 3-body Abrasion Tester (모래 3체 마모시험 장비(3-body abrasion tester)를 이용한 PLA프린팅 표면의 형상별 트라이볼로지 성능 분석)

  • Yong Seok Choi;Kyeongryeol Park;Seongmin Kang;Unseong Kim;Kyungeun Jeong;Young Jin Park;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.250-255
    • /
    • 2023
  • This study applies various surface patterns to minimize material loss in construction equipment that is subject to severe wear due to sand, such as the wear-resistant steel plates of dump trucks or the teeth of excavators. The relationship between surface morphology and wear behavior is investigated using PLA+ polymer to observe the effect of the surface pattern. Five types of samples - smooth, concave, convex, wavy concave, and wavy convex designs - are created using a 3D printer. A wear experiment is conducted for a duration of 3 h using 6.5 kg of abrasive particles. The mass loss of the samples after the experiment is measured to assess the extent of wear. Additionally, the surface morphology of the samples before and after the experiment is analyzed using SEM and confocal microscopy. The study results reveal that the smooth design exhibits the highest wear loss, whereas the concave and wavy concave designs show relatively lower wear loss. The convex and wavy convex designs exhibit varying contact areas with the abrasive particles depending on the surface pattern, resulting in different levels of wear. Furthermore, a comparison between the experimental results and DEM simulations confirms the observed wear trends. This study reveals the relationship between wear damage according to surface pattern shape and is expected to be of substantial help in the analysis of wear and tear on agricultural and heavy equipment.

Damage Analysis of Nearby Structures with the Consideration of Tunnel Construction Conditions in Sandy and Clayey Ground (모래 및 점토지반에서 터널시공조건을 고려한 인접구조물의 손상도 분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.53-63
    • /
    • 2011
  • This paper investigates the effects of tunnelling-induced ground movements on nearby structures, considering soil-structure interactions of different ground (loose sand, dense sand, soft clay, stiff clay) and construction conditions (ground loss). The response of four-story block structures, which are subjected to tunnelling-induced ground movements, has been investigated in different ground and construction conditions (ground loss) using numerical analysis. The structures for numerical analysis has been modelled using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four-story block structures has been investigated with a ground movement magnitude and compared in terms of ground and construction conditions (ground loss) considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in structures, has been provided in terms of ground and construction conditions (ground loss) using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby structures due to tunnelling-induced ground movements.

Response Analysis of Nearby Structures with the Consideration of Tunnel Construction and Ground Conditions (터널시공 및 지반조건을 반영한 인접구조물의 거동분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.255-263
    • /
    • 2010
  • This paper investigates the effects of tunnelling-induced ground movements on nearby structures, considering soil-structure interactions of different construction (ground loss) and soil characteristics. The response of four-story block structures, which are subjected to tunnelling-induced ground movements, has been investigated in different construction (ground loss) and soil conditions using numerical analysis. The structures for numerical analysis has been modelled using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four-story block structures has been investigated with a ground movement magnitude and compared in terms of construction (ground loss) and soil conditions considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in structures, has been provided in terms of construction (ground loss) and soil conditions using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby structures due to tunnelling-induced ground movements.

Accuracy Assessment of Topographic Volume Estimation Using Kompsat-3 and 3-A Stereo Data

  • Oh, Jae-Hong;Lee, Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.261-268
    • /
    • 2017
  • The topographic volume estimation is carried out for the earth work of a construction site and quarry excavation monitoring. The topographic surveying using instruments such as engineering levels, total stations, and GNSS (Global Navigation Satellite Systems) receivers have traditionally been used and the photogrammetric approach using drone systems has recently been introduced. However, these methods cannot be adopted for inaccessible areas where high resolution satellite images can be an alternative. We carried out experiments using Kompsat-3/3A data to estimate topographic volume for a quarry and checked the accuracy. We generated DEMs (Digital Elevation Model) using newly acquired Kompsat-3/3A data and checked the accuracy of the topographic volume estimation by comparing them to a reference DEM generated by timely operating a drone system. The experimental results showed that geometric differences between stereo images significantly lower the quality of the volume estimation. The tested Kompsat-3 data showed one meter level of elevation accuracy with the volume estimation error less than 1% while the tested Kompsat-3A data showed lower results because of the large geometric difference.

Reference Points Selection for Interpolation in Digital Elevation Model (수치표고모델의 보간기준점 선정에 관한 연구)

  • 최병길;김욱남;진세일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2003
  • The method that selects reference points for interpolation is very important in Digital Elevation Model. However, there is no definition of an accurate standard until now, so users select the reference points for interpolation at their option. This paper aims to study on the accurate selection of the reference points for interpolation of DEM. This paper analyzed the method using the number of points and the reference points selection method by using the average distance calculated, from irregular points. Based on the analysis of the results, it shows that the Kriging method applying of the average distance is more efficient in construction of DEM.

Proposal for an Inundation Hazard Index of Road Links for Safer Routing Services in Car Navigation Systems

  • Kim, Ji-Young;Lee, Jae-Bin;Lee, Won-Hee;Yu, Ki-Yun
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.430-439
    • /
    • 2010
  • Inundation of roads by heavy rainfall has attracted more attention than traffic accidents, traffic congestion, and construction because it simultaneously causes travel delays and threatens driver safety. For these reasons, in this paper, we propose an inundation hazard index (IHI) of road links, which shows the possibility of inundation of road links caused by rainfall. To generate the index, we have used two key data sources, namely the digital elevation model (DEM) and past rainfall records of when inundation has occurred. IHI is derived by statistically analyzing the relationships between the normalized relative height of the road links calculated from DEM within the watershed and past rainfall records. After analyzing the practical applicability of the proposed index with a commercial car navigation system through a set of tests, we confirmed that the proposed IHI could be implemented to choose safer routes, with reduced chances of encountering roads having inundation risks.

Numerical investigation of the effect of impact on the rockfall protective embankment reinforced with geogrid

  • Mohammad Reza Abroshan;Majid Noorian-Bidgoli
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.353-367
    • /
    • 2023
  • The construction of a protective embankment is a suitable strategy to stop and control high-energy rock blocks' impacts during the rockfall phenomenon. In this paper, based on the discrete element numerical method, by modeling an existing embankment reinforced with geogrid, its stability status under the impact of a rock block with two types of low and high kinetic energy, namely 2402 and 4180 kJ, respectively, has been investigated. The modeling results show that the use of geogrid has caused the displacement in the front and back of the embankment to decrease by more than 30%. In this case, the reinforced embankment has stopped the rock block earlier. The displacements obtained from the DEM modeling are compared with the displacements measured from an actual practical experiment to evaluate the results' validity. Comparison between the results shows that the displacement values are close together, while the maximum percentage error in previous studies by an analytical method and the finite element method was 76.4% and 36.6%, respectively. Therefore, the obtained results indicate the discrete numerical method's high ability compared to other numerical and analytical methods to simulate and design the geogrid-reinforced soil embankment under natural disasters such as rockfall with a minor error.

Response Analysis of Block-Bearing Structure due to Tunnel Excavation in Clay Ground (점토지반에서 터널굴착에 따른 상부 블록구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.175-183
    • /
    • 2014
  • This study investigates the response of structures to tunnelling-induced ground movements in clay ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), and tunnel ground condition (soft clay and stiff clay). Four-story block-bearing structures have been used because the structures can easily be characterized of the extent of damages with crack size and distribution. Numerical parametric studies have been used to investigate of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and tunnel ground condition and provide a relationship chart among them. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in clay ground.

A Study for the Border line Extraction technique of City Spatial Building by LiDAR Data (LiDAR 데이터와 항공사진의 통합을 위한 사각 빌딩의 경계점 설정)

  • Yeon, Sang-Ho;Lee, Young-Wook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.27-29
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF

Aspects of size effect on discrete element modeling of normal strength concrete

  • Gyurko, Zoltan;Nemes, Rita
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.521-532
    • /
    • 2021
  • Present paper focuses on the modeling of size effect on the compressive strength of normal concrete with the application of Discrete Element Method (DEM). Test specimens with different size and shape were cast and uniaxial compressive strength test was performed on each sample. Five different concrete mixes were used, all belonging to a different normal strength concrete class (C20/25, C30/37, C35/45, C45/55, and C50/60). The numerical simulations were carried out by using the PFC 5 software, which applies rigid spheres and contacts between them to model the material. DEM modeling of size effect could be advantageous because the development of micro-cracks in the material can be observed and the failure mode can be visualized. The series of experiments were repeated with the model after calibration. The relationship of the parallel bond strength of the contacts and the laboratory compressive strength test was analyzed by aiming to determine a relation between the compressive strength and the bond strength of different sized models. An equation was derived based on Bazant's size effect law to estimate the parallel bond strength of differently sized specimens. The parameters of the equation were optimized based on measurement data using nonlinear least-squares method with SSE (sum of squared errors) objective function. The laboratory test results showed a good agreement with the literature data (compressive strength is decreasing with the increase of the size of the specimen regardless of the shape). The derived estimation models showed strong correlation with the measurement data. The results indicated that the size effect is stronger on concretes with lower strength class due to the higher level of inhomogeneity of the material. It was observed that size effect is more significant on cube specimens than on cylinder samples, which can be caused by the side ratios of the specimens and the size of the purely compressed zone. A limit value for the minimum size of DE model for cubes and cylinder was determined, above which the size effect on compressive strength can be neglected within the investigated size range. The relationship of model size (particle number) and computational time was analyzed and a method to decrease the computational time (number of iterations) of material genesis is proposed.