• Title/Summary/Keyword: DEHP metabolites

Search Result 14, Processing Time 0.019 seconds

Assessment of Di (2-ethylhexyl) Phthalate Exposure by Urinary Metabolites as a Function of Sampling Time

  • Park, Moon-Seo;Yang, Yun-Jung;Hong, Yeon-Pyo;Kim, Sang-Yon;Lee, Yong-Pil
    • Journal of Preventive Medicine and Public Health
    • /
    • v.43 no.4
    • /
    • pp.301-308
    • /
    • 2010
  • Objectives: In most DEHP exposure assessment studies, single spot urine sample was used. It could not compare the exposure level among studies. Therefore, we are going to represent the necessity of selection of proper sampling time of spot urine for assessing the environmental DEHP exposure, and the association urinary DEHP metabolites with steroid hormones. Methods: We collected urine and plasma from 25 men. The urine sampling times were at the end of the shift (post-shift) and the next morning before the beginning of the shift (pre-shift). Three metabolites of DEHP {mono(2-ethylhexyl) phthalate [MEHP], mono-(2-ethyl-5-hydroxyhexyl)phthalate [MEHHP], and mono(2-ethyl-5-oxohexyl)phthalate [MEOHP]} in urine were analyzed by HPLC/MS/MS. Plasma luteinzing hormone, follicle stimulating hormone, testosterone, and $17{\beta}$- estradiol were measured at pre-shift using a ELISA kit. A log-transformed creatinine-adjusted urinary MEHP, MEHHP, and MEOHP concentration were compared between the post- and pre-shift. The Pearson’s correlation was calculated to assess the relationships between log-transformed urinary MEHP concentrations in pre-shift urine and hormone levels. Results: The three urinary metabolite concentrations at post-shift were significantly higher than the concentrations in the pre-shift (p<0.0001). The plasma hormones were not significantly correlated with log-transformed creatinine - adjusted DEHP metabolites. Conclusions: To assess the environmental DEHP exposure, it is necessary to select the urine sampling time according to the study object. There were no correlation between the concentration of urinary DEHP metabolites and serum hormone levels.

Genotoxicity of Di-2-Ethylhexyl phthalate, 2-EthylHexanoic Acid and Di-2-Ethyl Phthalate in Human Lymphocytes in vitro (Di-2-EthylHexyl Phthalate, 2-EthylHexanoic Acid 및 Di-2-Ethyl Phthalate의 유전독성 평가)

  • Song, Joo-Young;Cho, Yoon-Hee;Kim, Yang-Jee;Chung, Hai-Won
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.3
    • /
    • pp.110-117
    • /
    • 2005
  • DEHP is one of well known endocrine disrupter and it is used as additives for the production of PVC. There has been contradictional result on the genotoxicity of DEHP. In order to examine genotoxicity of a endocrine disruptors, DEHP (Di-2-EthylHexyl Phthalate) and it's metabolites, EHA (2-EthylHexanoic Acid) and DEP (Di-2-Ethyl Phthalate), chromosome aberration (CA), sister chromatid exchange (SCE), micronuclei (MN) and single cell gel electrophoresis were analysised. No increase of the frequency of CA was observed by DEHP and its two metabolites. DEHPincreased the frequency of SCE and MN whereas EHA only increased the frequency of SCE. DEP increased the frequency of SCE but the increase was not statistically significant. DEHP and DEP, also induced DNA damage. It is suggested that combination of different methods were recomended to find the genotoxicity of DEHP and its metabolites.

  • PDF

Determination of Phthalate Metabolites in Human Serum and Urine as Biomarkers for Phthalate Exposure Using Column-Switching LC-MS/MS

  • Jeong, Jee-Yeon;Lee, Ji-Hyun;Kim, Eun-Young;Kim, Pan-Gyi;Kho, Young-Lim
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • Objectives: Although phthalates like dibutyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) are commonly used as plasticizers and their metabolites are especially suspected of reproductive toxicity, little is known about occupational exposure to those phthalates. The aim of this study was to assess the utility of measuring the metabolite concentrations of DBP and DEHP in serum and urine samples as an indicator of occupational exposure to those phthalates. Methods: Phthalate metabolites were analyzed by using column-switching high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Results: We detected phthalate metabolites in serum and urine matrices at approximately 10-fold lower than the limit of detection of those metabolites in the same matrix by LC-MS/MS without column switching, which was sufficient to evaluate concentrations of phthalate metabolites for industrial workers and the general population. Conclusion: The accuracy and precision of the analytical method indicate that urinary metabolite determination can be a more acceptable biomarker for studying phthalate exposure and adverse health outcomes.

Uptake, Excreation, and Metabolism of $^{14}C$-labelled Di-2-ethylhexyl phthalate by Mullet, Mugil cephalus

  • PARK Chul Won;Imamura Harumi;Yoshida Tamao
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.6
    • /
    • pp.424-428
    • /
    • 1990
  • Mulletts, Mugil cephalus were exposed to artificial sea water containing $50{\mu}g/\iota\;of\;^{14}C-la-belled$ di-2-ethylhexyl phthalate(DEHP) during 15 days and returned to the DEHP free sea water in order to know bioconcentration and depuration of DEHP in the fish. Bioaccumulative process of DEHP in the fish was rather fast, and bioconcentration level of $9.7\~14{\mu}g/g$ and a bioconcentration factor of $220\~270$ were reached after one any of exposure. The biological half-life of DEHP in fish was 1.8 days. Five intermediate metabolites of DEHP were detected in the benzene and ethyl acetate fraction of fish by TLC.

  • PDF

Di-(2-ethylhexyl) Phthalate (DEHP) and Uterine Histological Characteristics

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • Phthalates and those metabolites have long history in industry and suspected to have deficient effects in development and reproduction. These are well-known anti-androgenic chemicals and many studies have examined the effects of these compounds on male reproduction as toxins and endocrine disruptors. Uterus is a key organ for proper embryo development, successful reproduction, and health of eutherian mammals including women. To understand the effects of the phthalate, the horizontal approach with a whole group of phthalate is best but the known phthalates are huge and all is not uncovered. Di-(2-ethylhexyl) phthalate (DEHP) is the most common product of plasticizers in polymer products and studied many groups. Although, there is limited studies on the effects of phthalates on the female, a few studies have proved the endocrine disrupting characters of DEHP or phthalate mixture in female. An acute and high dose of DEHP has adverse effects on uterine histological characters. Recently, it has been revealed that a chronical low-dose exposing of DEHP works as endocrine disrupting chemicals (EDC). DEHP can induce various cellular responses including the expression regulation of steroid hormone receptors, transcription factors, and paracrine factors. Interestingly, the response of uterus to DEHP is not monotonous and the exposed female has various phenotypes in fertility. These suggest that the exposing of DEHP may causes of histological modification in uterus and of disease in female such as endometriosis, hyperplasia, and myoma in addition to developmental and reproductive toxicity.

APPLICATION OF METABOLITE PROFILE KINETICS FOR EXPOSURE AND RISK ASSESSMENT

  • Lee, Byung-Mu
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.34-45
    • /
    • 2006
  • Chemical toxicants are metabolically converted to numerous metabolites in the body. Toxicokinetic characteristics of metabolites could be therefore used as biomarker of exposure for human risk assessment. Biologically based dose response (BBDR) model was proposed for future direction of risk assessment. However, this area has not been developed well enough for human application. Benzo(a)pyrene (BP), for example, is a well-known environmental carcinogen and may produce more than 100 metabolites and BPDE-DNA adduct, a covalently bound form of DNA with benzo(a)pyrene diolepoxides (BPDES), has been applied to qualitatively or quantitaively estimate human exposure to BP. In addition, di(2-ethylhexyl) phthalate (DEHP), a widely used plasticize. in the polymer industry, is one of endocrine-disrupting chemicals (EDCs) and has been monitored in humans using urinary or serum concentrations of DEHP or its monomer MEHP for exposure and risk assessment. However, it is difficult to estimate the actual level of toxicants using these biomarkers in humans using. This presentation will discuss a methodology of exposure and risk assessment by application of metabolic profiling kinetics.

  • PDF

Determination of Phthalate Metabolites in Korean Children's Urine by High Performance Liquid Chromatography with Triple Quadrupole Tandem Mass Spectrometry (LC/MS/MS를 이용한 어린이 소변 중 프탈레이트 대사산물 분석)

  • Kho, Young-Lim;Jeong, Jee-Yeon;Choi, Kyung-Ho;Kim, Pan-Gyi
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.4
    • /
    • pp.271-278
    • /
    • 2008
  • Dialkylated phthalates have been commonly used as plasticizers and a variety of applications. Phthalate diesters have been shown to be developmental and reproductive toxicants. It is very difficult to exactly estimate the dose of dialkylated phthalates taken up by the general population because of environmental contamination. Urinary metabolites of phthalates enabled to estimate internal exposure. The objective of this study was quantitative determination of phthalate metabolites by LC/MS/MS with on-line cleanup method to analyze phthalate metabolites in Korean children's urine. We employed LC/MS/MS with on-line enrichment and column-switching techniques for this biological monitoring. Metabolites determined were 4 primary metabolites; MEHP, MnBP, MiBP, MEP and 2 secondary metabolites of DEHP; 5-OH-MEHP), 5-oxo-MEHP. We analyzed children's urine from 30 boys and 30 girls. The method detection limit of phthalate metabolites were 0.03 ng/mL for MEP, 1.05 ng/mL for MBP, 0.22 ng/mL for MEHP, 0.15 ng/mL for 5-OHMEHP and 0.16 ng/mL for 5-oxo-MEHP, respectively. Switching Column LC/MS/MS was proven to be a useful tool to determine metabolites of phthalate diesters in human urine. The correlation among phthalate metabolites was very high and statistically significant, except MEP. The children's age (months) was negatively correlated to the concentration of phthalate metabolites. The geometric mean concentration of phthalate metabolites (mg/g creatinine) in children's urine were 25.5 for MEP, 130.3 for MnBP, 56.8 for MiBP, 19.5 for MEHP, 85.6 for 5-OH-MEHP and 83.1 for 5-oxo-MEHP, respectively. Levels of estimated daily intake of parent phthalate compounds (${\mu}g$/kg bw/day) were 0.8 for DEP, 5.0 for DnBP, 1.9 for DiBP and $8.9{\sim}14.2$ for DEHP, respectively. Estimated daily intake for DEP and DiBP were lower than those of other studies but the value for DEHP was higher than that of other study.

A Chronic-Low-Dose Exposing of DEHP with OECD TG 443 Altered the Histological Characteristics and Steroidogeic Gene Expression of Adrenal Gland in Female Mice

  • Lee, Bo Young;Jo, Jeong Bin;Choi, Donchan;Lee, Sung-Ho;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.257-268
    • /
    • 2021
  • Phthalates and their metabolites are well-known endocrine disrupting chemicals. Di-(2-ethylhexyl) phthalate (DEHP) has been widely used in industry and the exposing possibility to adult is high. In this study, DEHP was treated (133 ㎍/L and 1,330 ㎍/L in drinking water) according to the OECD test guideline 443 to mature female mice and their adrenal gland were examined for histological characteristics and steroidogenic gene expression. The wet weight of the adrenal gland was increased in all administrated groups compared to control. The diameter of zona fasciculata (ZF) was increased by DEHP in both outer ZF and inner ZF but there was no difference in morphology of the cells and arrangements into zona between groups. In addition, the arrangement of extracellular matrix was not different between control and DEHP groups. CYP11B1 was mainly localized at ZF and the intensity was not different between groups. DAX1 was localized in zona glomerulosa (ZG) and ZF, and its expression levels were decreased by DEHP administration. Its level was lower in DEHP133 group than DEHP1330 group. On the other hand, CYP17A1 was localized in ZG of DEHP1330 group. These results suggest that chronic low-dose DEHP exposing may modify the microstructure and function of the adrenal cortical cortex.

DEHP, DEP and DBP Exposure Analysis using Urinary Metabolites of Gyonggi Province University Students

  • Lee, JangWoo;Kho, YoungLim;Kim, SungKyoon;Choi, Kyungho;Hwang, SeongHee;Jeong, Jeeyeon;Kim, Pangyi
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.408-417
    • /
    • 2013
  • Objectives: Phthalates are used as plasticizers in polyvinyl chloride (PVC) plastics. As phthalate plasticizers are not chemically bound to the PVC, they can leach, migrate or evaporate into indoor air and atmosphere, foodstuffs, other materials, etc. Therefore, humans are exposed through ingestion, inhalation, and dermal exposure over their entire lifetime, including during intrauterine development. In particular, university students have a great number of opportunities to contact products including phthalates during campus life (food packaging, body care products, cosmetic, lotions, aftershave, perfume etc.). The purpose of this study was to examine levels of phthalate exposure as undergraduate students begin to use pharmaceuticals and personal care products including phthalates. Methods: Phthalate metabolites, mono-ethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), mono-2- ethylhexyl phthalate (MEHP), {(mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP}, and mono-(2-ethlyl-5-oxohexyl) phthalate (MEOHP} were examined. 80 urine samples collected from university students were analyzed using LC/MS/MS(API 4000, Applied Bioscience) with on-line enrichment and columnswitching techniques. This study was carried out at Y university located in Gyonggi Province from 2008 to 2011. Results: The detection limit of phthalate metabolites were 0.03 ng/mL for MEP, 0.11 ng/mL for MnBP, 0.08 ng/mL for MiBP, 0.93 ng/mL for MEHP, 0.19 ng/mL for MEOHP and 0.16ng/mL for MEHHP. MnBP showed the highest urinary levels (median: 31.6 ug/L, 24.8 ug/g creatinine (cr)). Concentrations were also high for MEHHP (median: 24.1 ug/L, 19.0 ug/g cr), followed by MEOHP (median: 22.8 ug/L, 17.9 ug/g cr). In individual cases, the maximum level reached up to 348 ug/L, and 291 ug/g cr, respectively. The urinary and creatinine adjusted levels of MEP were lower than those for DBP and DEHP metabolites, but were higher in 95th percentiles. As a result, the mean daily DEP intake value was 2.3 ${\mu}g/kg$ bw/day, 3.5 ${\mu}g/kg$ bw/day for DEHP and 4.9 ${\mu}g/kg$ bw/day for DBP. Conclusion: These students' phthalate exposure levels were below the international safe level set by the EU, but higher than the 2012 KFDA survey of the age group from 3 to 18.

Phthalates Contamination in Indoor Dust in Elementary Schools in Seoul: A Pilot Study (서울시 초등학교 실내 먼지 중 프탈레이트 오염실태 조사)

  • Lee, Young-Sun;Choi, Inja
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.548-554
    • /
    • 2020
  • Objectives: This study is to examine the polyvinyl chloride (PVC) materials in elementary school classrooms and libraries in Seoul, and to investigate phthalate contamination in indoor dust. Methods: PVC material was identified for building materials and furniture using portable x-ray fluorescence (XRF). Phthalates in dust samples (n=19) were extracted by ultrasonic extraction using cyclohexane and analyzed by GC-MS. Results: Diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and Bis (2-ethylhexyl) phthalate (DEHP) were found in all collected dust samples (n=19), and diisonyl phthalate (DINP) was detected in all except for one sample (n=18). The concentration of DEHP (median: 2190 mg/kg) and DINP (2960 mg/kg) were higher than other compounds, suggesting that there are many products in the school that used these compounds. When comparing the phthalate concentration in the classroom (n=11) and library dust (n=8), the total concentration in the classroom (median: 10000 mg/kg) was higher than that in the library (8030 mg/kg). DEHP was the dominant compound in the library. The library is relatively more equipped with PVC furniture (n=83) and most floors are also identified as PVC material, suggesting that floors and furniture made of PVC materials are main sources of DEHP contamination. Conclusions: This study is a pilot survey for investigating phthalate contamination in elementary schools. As a result of the survey, phthalate contamination in elementary school was confirmed. However, further study requires risk assessment of children through analysis of phthalate metabolites in children based on sufficient number of samples and information about the site.