• Title/Summary/Keyword: DEGBA

Search Result 4, Processing Time 0.016 seconds

Thermal Behavior of Nylon 6 and Bisphenol-A Polycarbonate Blends Compatibilized with an Epoxy Resin (에폭시 수지로 상용화된 Nylon 6와 비스페놀-A PC 블렌드의 열적거동)

  • Abdrhman, Mabrouk J.M.;Zhang, Liye;Zhou, Bing;Li, Hangquan
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.523-528
    • /
    • 2008
  • Diglycidyl ether of bisphenol-A (DGEBA) was selected as a compatibilizer in Nylon 6 and bisphenol-A polycarbonate (PC) blends. SEM revealed a much finer morphology in the presence of DGEBA. The thermal properties, such as glass transition, melting point, crystallization temperature and rate, of the blends were examined using DSC. Overall, the introduction of DGEBA caused a strong dependence of these thermal properties on the composition due to compatibilization.

Autocatalytic Cure Kinetics of DGEBA/MDA/PGE-AcAm System (DGEBA/MDA/PGE-AcAm계의 자촉매 반응 속도론)

  • Lee, Jae-Yeong;Sim, Mi-Ja;Kim, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.797-801
    • /
    • 1998
  • The cure kinetics for diglycidyl ether of bisphenol A(DGEBA)/4, 4'-methylene dianiline(MDA) system with or without lOphr of phenyl glycidyl ether(PGE)-acetamide(AcAm) was studied by autocatalytic cure expression. On the dynamic DSC curves, the exothermic peak temperature and the onset temperature of reaction decreased with the addition of PGE-AcAm. Regardless of the addition of PGE-AcAm, the shape of the conversion curve showed sigmoid, and this meant that DGEBA/MDA and DGEBA/MDA/PGE-AcAm systems followed autocatalytic cure reaction. When PGE-AcAm was added to DGEBA/MDA system, the cure rate increased about 1.2~1.4 times due to the catalytic role of hydroxyl groups in PGE-AcAm.

  • PDF

Effects of Maleinized Polybutadiene on the Elongation and Impact Peel Strength of Epoxy Resins

  • Albin Davies;Archana Nedumchirayil Manoharan;Youngson Choe
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.162-168
    • /
    • 2024
  • The effect of maleinized polybutadiene (MPB) on the mechanical properties of epoxy resins including adhesion strength, elongation and impact peel resistance was investigated in this study, in which MPB is an anhydride-functionalized polybutadiene prepolymer. Different molecular weights (3.1K and 5.6K) of MPB were added to diglycidyl ether bisphenol-A (DEGBA), an epoxy resin, to increase its impact peel strength and elongation. At various loading percent (5, 10, 15, 20 and 25 wt%) of MPB in the epoxy resin, significant improvements of mechanical properties were observed. According to the comparative analysis results, the modified epoxy system with 15 wt% (3.1K) MPB exhibited the highest lap shear strength, about 40% higher than that of neat epoxy. The tensile strength and elongation steadily and simultaneously increased as the loading percent of MPB increased. The impact peel strengths at low (-40℃) and room (23℃) temperatures were substantially improved by MPB incorporation into epoxy resins. Reactive and flexible MPB prepolymer seems to construct strong nano-structured networks with rigid epoxy backbones without sacrificing the tensile and adhesion strengths while increasing impact resistance/toughness and elongation properties. For higher impact peel while maintaining adhesion and tensile strengths, approximately 10-15 wt% MPB loading in epoxy resin was suggested. Consequently, incorporation of functionalized MPB prepolymer into epoxy system is an easy and efficient way for improving some crucial mechanical properties of epoxy resins.

A Study on the Water Resistance and Thermo-mechanical Behaviors of Epoxy Adhesives (에폭시 접착제의 내수성, 열적 및 기계적 물성에 관한 연구)

  • Park, Soo-Jin;Kim, Jong-Hak;Choi, Kil-Yeong;Joo, Hyeok-Jong;Jin, Fan-Long
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.166-173
    • /
    • 2005
  • Effect of thermal aging on the weight loss and water absorption of epoxy adhesives was investigated in the presence of three types of different hardeners, such as D-230, G-5022, and HN-2200. Thermal and mechanical properties of the cured epoxy resins were also studied througth the glass transition temperature and shear adhesion strength measurements. Weight losses of DGEBA/D-230 and DGEBA/HN- 2200 systems were not varied. However, the weight of DGEBA/G-5022 system was significantly decreased with increasing the thermal aging time. The water absorption of the specimens was increased as the thermal aging time increased except that using G-5022. DEGBA/HN-2200 system showed higher $T_g$ value than those of other systems, due to the formation of the fine three-dimensional network structure containing aliphatic ring. Shear adhesion strength of all systems was increased with increasing the thermal aging tine, which is attributed to increased degree of cure and fine three-dimensional network structure formation. And $T_g$ values and shear adhesion strength of all specimens exposed to water was decreased as the immersion time increased.