• 제목/요약/키워드: DEFORM-3D

검색결과 121건 처리시간 0.033초

Measurement and Scale Effects of Digitized Virtual Human Head

  • Takakazu, Ishimatsu;Chan, Tony
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.89.1-89
    • /
    • 2001
  • Measurement of complex surfaces without touching is desirable in several fields. This arises mainly for measurement of complex surfaces including those surfaces that deform during touch. Our research presented in this paper describes the use of a 3D digitizer for scanning 3D objects. The use of such a device, in addition to proper calibration, requires proper scaling in all three dimensions. We propose measurement techniques to measure various aspects of the surface circumference, area and volume. We also present experiments from using a 3D Minolta digitizer for measuring 3D human heads.

  • PDF

멀티빌렛을 사용한 압출굽힘가공의 성형 해석 (Forming Simulation of Extru-Bending Process Using Multi-Billets)

  • 박대윤;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.120-123
    • /
    • 2004
  • The bending phenomenon has been known to be occurred by the difference of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets inside die chamber after passing the multi-hole container. The curvature can be controlled by the two variables, the one of them is the different velocity of billets through the multi-hole container, the other is the difference of hole diameter. The bending phenomenon during extruding using four billets can be obtained by the difference of hole diameters in the multi-hole container or by the difference of relative velocity of billet inserted in the container. As results of DEFORM-3D analysis, it can be shown that bending can be obtained during extruding by the difference of relative velocity of two billets or by the difference of hole diameter, and the amount of curvature is increased by the difference of velocity and diameter. According to the shape of products, the curvature of rectangular section is bigger than the curvature of regular square section. And, it is estimated that, because the stress on the welding line is much higher than yield stress of material, the bonding of four billets can be obtained.

  • PDF

비선형 열전달 계수를 사용한 알루미늄 6082 빌렛의 열간 압축 공정 해석 (Analysis of Hot Compression Process of Aluminum 6082 Billet using Nonlinear Heat Transfer Coefficient)

  • 전효원;서창희;권태하;박춘달;전진호;최현열;강경필
    • 소성∙가공
    • /
    • 제28권1호
    • /
    • pp.5-14
    • /
    • 2019
  • In order to reduce the weight of automobile parts, automobile parts using aluminum alloy are being developed. Aluminum alloy for automobile parts is mainly made of Al6xxx (Al-Mg-Si) type alloy, which is excellent in hot forming property, and it can increase mechanical properties by the use of heat treatment. In this study, hot forming was performed using Al6082. Before the hot forming, the forming analysis was performed using the DEFORM-3D finite element analysis program in this case. For the forming analysis, the heat transfer coefficient was derived from the experiment, and the forming analysis was performed by applying it. At the forging analysis, the temperature of Al6082 material was set to 813K and that of the mold was set to room temperature. After the forging analysis, the experiment was performed, and the forging analysis and the experimental results were compared.

HDPE 관의 TEE 성형에 대한 유한요소해석 (Finite Element Analysis of TEE Forming for HDPE Pipe)

  • 왕창범;송두호;박용복
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.298-307
    • /
    • 2006
  • 본 논문에서 HDPE 관의 일체형 TEE성형 공정은 강소성 유한요소 해석 프로그램인 DEFORM-3D를 이용하여 해석을 하였다. 이중 보온관에서 외관으로 사용되는 HDPE 관은 관을 통하여 흐르는 온수의 온도를 유지하기 위한 관으로, TEE는 주관에 가지관을 연결하여 열의 수송방향을 바꾸는 역할을 한다. TEE제작에 압출 용접(Extrusion Welding)을 사용하는 기존의 방법으로는 이음부에서 강도가 취약한 문제점이 발생하기 때문에 HDPE 관을 성형시켜 TEE 형태로 일체화시킨 후에 맞대기 용접(Butt Welding)을 하는 방식을 제안하였다. 열간과 냉간 성형 실험을 실시하였고, 초기 구멍 형태에 따른 모델 파라미터가 강소성 유한요소해석에 의해 규명되어 졌으며, 이는 실제의 제품 제조 공정에 적용되어 졌다.

  • PDF

DEFORM을이용한 로터리 스웨이징 공정의 시뮬레이션에 대한 연구 (A Study on Rotary Swaging Process Simulation using DEFORM)

  • 임동재;정원지;설상석;김대영;최경신;차태형
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.106-112
    • /
    • 2019
  • Rotary swaging is a method of forging automotive drive shafts. In this paper, we propose a new two-hammer forging technique by applying the problem-solving approach TRIZ to improve the efficiency and productivity of the rotary swaging automation process. We will simplify the materials and hammers via the 3D modeling tool SolidWorks for high accuracy of a comparative analysis of existing and proposed methods under the same boundary conditions. In addition, we will compare the stress trends of the proposed model using ANSYS Workbench and verify the feasibility through a comparison of the simulation results using DEFORM. Relative to the existing method, the proposed method can decrease production costs and improve efficiency of the automation process by reducing the power source.

회전압출다이를 이용한 압출가공에 관한 성형 해석 (Forming Simulation of the Extrusion Process by Rotating Extrusion Dies)

  • 박승민;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.124-127
    • /
    • 2004
  • In the previous experimental study about extrusion of circular product with four helical fins, it was known that product with helical fins may not to be rotated during extruding with rotating extrusion dies in spite of using twisted dies. According to the results of experiments with Plasticin material, it was anticipated that the extrusion load could be reduced if rotating dies could be used, because it needs high pressure in order to twist billet and form fin shape on the surface of product in the case of using conventional fixed helical dies. So, in this paper, according to the extrusion load analyzed by DEFORM-3D software, optimal rotational velocity of rotating dies can be obtained, and the twisting, angle of product can be analyzed during extruding product with helical fins in the case of two types of rotating of dies. The results of analysis by DEFORM-3D show that the twisting angle of product can be controlled by twisted angle of extrusion helical dies and the rotational velocity of helical dies.

  • PDF

리드프레임 피어싱 공정의 2D와 3D 모델링 비교해석 및 실험적 연구 (A Comparative Analysis between 2D and 3D Modeling in the Piercing Process of Lead Frame and Experimental Study)

  • 방현중;한수식;한철호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.288-291
    • /
    • 2006
  • Piercing or blanking process is widely used to manufacture most of lead frame parts, but it is difficult to analyze the real process by the actual shape through progressive dies. In this paper several stages in progressive punching are modeled by 2D and 3D configurations using $DEFORM^{TM}$ 2D/ 3D code. During the progressive stage some state variables and deformed configurations are analyzed in each model. There are three stages in the process, the deformations at each stage are cumulative. The advantages and disadvantages of these two type modeling are discussed and analyzed. The experiments are performed as a working material copper alloy through manufactured die. Computed results in load by two types are compared to experiments.

  • PDF

유체 유동을 고려한 유동부를 갖는 용접부 형상의 마찰용접 해석 (Friction Welding Analysis of Welding Part Shape with Flow Gallery Considered Fluid Flow)

  • 염성호;김범년;홍성인
    • 한국추진공학회지
    • /
    • 제11권3호
    • /
    • pp.7-12
    • /
    • 2007
  • 마찰용접은 소재를 서로 마찰시켜 마찰열에 의해 용접하는 방법이다. 본 연구는 내부에 유동부를 갖는 부분을 마찰용접을 이용하여 용접했을 때 유체의 유동에 영향이 없는 유동부를 설계하는데 목적을 두고 있다. 용접부의 설계 변수를 결정하고 이에 대하여 마찰용접 해석을 DEFORM-2D를 이용하여 해석을 수행하였다. 마찰용접 해석을 수행하기 위해 온도변화에 따른 마찰계수와 업셋 압력, 소재의 분당회전수, 그리고 유동응력을 입력해 주었다. 해석결과에 따라서 유동에 영향이 없는 용접부의 최적형상을 결정하였다.

3차원 유한요소해석을 이용한 스크롤 로터의 단조 금형 설계 (The Forging Die Design of Scroll Rotor by using the 3-D FEM Analysis)

  • 이영선;이정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.111-115
    • /
    • 2001
  • The die design for hot forging was investigated for manufacturing precisely of scroll rotor made with Al-Si alloy. A scroll rotor is a non-symmetric 3-D shape part, having involute wraps. Disk-shaped billet of Al-Si alloy was extruded to wraps and boss simultaneously. Because the involute wraps is not axi-symmetric, the flow velocity and the stress of die is very much different at each portion. Moreover, the die in wraps portion is a cantilever beam and fractured. In this paper, the analysis of forming and die stress is investigated using the FEM tool, DEFORM-3D. The tensile strength of tool material is $250kg/mm^{2}$. From the analysis results, we can find the maximum principal stress of die is over the fracture strength and redesign the die. The prototype forged part is superior in net shaping and microstructure.

  • PDF