• 제목/요약/키워드: DEFORM 3D

검색결과 123건 처리시간 0.027초

3차원 인체측정을 위한 측정용 브리프에 관한 연구 (The Brief as a Measurement Garment)

  • 이준옥;최경미;남윤자
    • 한국의류산업학회지
    • /
    • 제10권3호
    • /
    • pp.329-334
    • /
    • 2008
  • The purpose of this research is to develop the design, pattern and size system of brief as a measurement garment in order to obtain more precise silhouettes and sizes of the body in 3D measurements. The results of this research are as follows: First, nylon/lycra materials which elasticity is equivalent to 18%(wale) and 27%(course), were selected as a material for briefs to minimize possible error in measurement and deformation of body shape caused by looseness or tightness in its measured parts. And T-back style design was selected, of which briefs neither deform human body nor cause overlapping or excessive tightness when was put on the measurement garment over it. Second, different darts for men and women were adopted into the pattern in consideration for the shape of hip. Third, the waist band of briefs was located between the waistline and abdominal girth line so that it didn't interfere with measurement, and using a wide band of 40mm minimized the tightness of the human body. In addition, the stitch lines and sewing procedure were simplified to minimize the deformation of body shape resulting from inseams and stitch lines. Finally, for the size of briefs, 6 cm intervals were set on the basis of the waist girth and 8 kinds for men and 6 kinds for women were selected in descending order of appearance rate by the interval sections. English T meaning T-back design and numbers representing the waist girth were marked in parallel for the name of size.

삼각형 메쉬로 이루어진 3D 모델의 변형을 위한 IK 계산 가속화 (An Accelerated IK Solver for Deformation of 3D Models with Triangular Meshes)

  • 박현아;강다은;권태수
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제27권5호
    • /
    • pp.1-11
    • /
    • 2021
  • 본 연구는 골격이 있고 삼각형 메쉬로 이루어진 3D 모델의 변형을 빠른 연산 속도로 구현하는 것을 목표로 한다. 이를 위해 삼각형 메쉬 정점의 위치를 빠른 속도로 계산할 수 있는 IK 풀이 방법을 연구하고 해당 인터페이스를 개발하였다. 모델 표면상에 한 개 이상의 마커를 지정하고 마커의 목표 위치를 설정하면, 이 시스템은 마커의 목표 위치를 기준으로 가속화된 IK 풀이를 통해 모델 표면을 구성하는 삼각형 메쉬 정점의 위치를 계산한다. 메쉬의 위치를 결정하는 데에는 각 마커와 해당 마커에 영향을 미치는 관절, 그리고 해당 관절의 상위(부모) 관절에 대하여 계산을 수행하는데, 이 과정에서 빈번하게 사용되는 중복된 항(terms)이 발생한다. 이러한 중복항을 사전에 계산해 둠으로써 기존의 삼중 중첩 반복 구조의 계산 절차를 이중 중첩 반복 구조로 개선하여 모델 변형 결과를 신속하게 구현할 수 있다. 제안된 가속화된 IK 풀이 방법은 LBS 기법으로 구현된 3D 모델을 다루거나 마커 없이 단순 촬영만으로 대상 물체를 추적하는 무마커 추적 관련 연구 등 다양한 분야에서 유용하게 활용할 수 있다.

무용접 후렉시블 조인트 개발에 관한 기초연구 (A Fundamental Study on Development of Non-Welded Flexible Joint)

  • 오철훈;박환철;정지현
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.57-62
    • /
    • 2017
  • The flexible joint with bellows and flange is made by welding bellows and flange in general. The welded parts cause a crack or demage in the flexible joint due to continuous vibration and fatigue limit. This paper is concerned with development of flexible joint with non-welded, free rotation of flange and non-packing to improve fatigue failure condition between bellows and flange. The support box and support plate that are components of press part are designed to compress fore-end of bellows only without demage of bellows. The production system of flexible joint is designed with piston attached on the compression side. The simulation is performed using Deform 3D software. As the result of simulation, the shape of compressed bellows was most proper in the compression power of $157kg{\cdot}f$ and any deformation has not occurred at a part besides fore-end. The result show that the production possibility of the designed flexible joint.

인텀샤프트 일체형 유니버셜 파이프 조인트용 다단조금형의 단조공정해석 (Forging Process Analysis of the Multi-forging Die for the Unified Universal Pipe Joint of the Intermediate Shaft)

  • 권혁홍;문관진;송승은
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.33-41
    • /
    • 2010
  • This study was aimed at the design of the dies for the unified pipe joint of the intermediate shaft using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

레이저 프린터용 샤프트 밀폐단조 성형해석 (An Analysis of Closed Die Forging of Laser Printer Shaft by Finite Element Method)

  • 차성훈;신명수;김종호;나승우;김종봉
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.150-155
    • /
    • 2009
  • A shaft for laser printers has to be produced with high dimensional accuracy of a few micrometers. Most companies produce the shaft, therefore, by machining. These days, forging process is tried to be employed in manufacturing the shaft for productivity. In this study, the dimensional inaccuracy of straightness is studied and the underfill is not focused because the shaft shape is simple and the load capacity of press is sufficient. The straightness and concentricity of the shaft is important for the operation of a laser printer. Many design parameters such as preform shapes, tooling dimensions, forging load, and billet geometries may affect on the dimensional accuracy. In the forging process of shafts, a billet which is cut from wires is used. The billet, therefore, may be a little bit curved but not always straight. The elastic recovery is considered to cause the dimensional inaccuracy. Therefore, the effect of the forging load on the elastic recovery and straightness is investigated through the finite element analyses using DEFORM-3D and ABAQUS.

회전압출다이를 사용한 헬리컬 핀붙이 원형단면 제품의 압출가공에 관한 연구 (A Study on Extrusion Process of Cylindrical Product with Helical Fins Using Rotating Extrusion Die)

  • 박승민;진인태
    • 소성∙가공
    • /
    • 제14권5호
    • /
    • pp.444-451
    • /
    • 2005
  • A new extrusion process of the circular section product with helical fins could be developed by rotating extrusion die. The twisting of extruded product is caused by the twisted conical die surface connecting the die entrance section and the die exit section linearly. But, until now, because the process has used fixed extrusion die, it needs high pressure in order to twist billet and form fin shape on the surface of billet. So, during extruding billet, in order not to twist billet, the extrusion die is needed to rotate itself instead of twisting of billet. It is known that it is possible to reduce extrusion load of product with helical fins by analysis and experiments using rotating die. And it is known that, through the extrusion load analysis by $DEFORM^{TM}-3D$ software, optimal rotational velocity of rotating die can be obtained according to reduction ratio of area and twisted angle of die. And experiments and analysis using rotating extrusion die show that the twisted angle of product can be controlled by twisted angle of extrusion helical die and the rotational velocity of extrusion helical die.

연료 압력 조절기용 가이드 밸브의 냉간 단조 개발에 관한 연구 (A Study on the Cold Forging Development of Guide Valve for the Fuel Pressure Regulator)

  • 송승은;권혁홍
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.331-336
    • /
    • 2012
  • This study was aimed at the design of the dies for the guide valve for the fuel pressure regulator using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

신경망을 이용한 클러치 기어의 정밀성형공법 개발 (Development of Forming Technology for Clutch Gear Using Artificial Neural Network)

  • 강재영;김병민;김영환;김동환
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.827-833
    • /
    • 2011
  • Precision forging of gears has a lot of advantages when compared to conventional gear shaping, because it allows the manufacture of gear parts without flash and consequently without the need for subsequent machining operations. In this study, the cold forging process is determined to manufacture the cold forged product for the precision clutch gear used of a commercial automobile, To do this, shape ratio of initial shape having influence the forgeability of forged product is analyzed. The optimal initial shape of clutch gear is designed using the results of DEFORM-3D and the artificial neural network (ANN). The initial shape through the detail analysis results, such as metal flow, distributions of strain can be obtained.

Counter Flow 방식의 랙 다이를 이용한 고정밀도 Worm 전조기술 개발 (Development of form rolling technology for high precision worm using the rack dies of counter flow type)

  • 고대철;박준모;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1861-1864
    • /
    • 2003
  • The objective of this study is to suggest the form rolling technology to produce high precision worm. Rack dies and roll dies are usually used to roll parts with worm teeth. The form roiling processes of worm shaft used as automotive part using the rack dies of counter flow type and the roll dies are considered and simulated by the commercial finite element code, DEFORM-3D. It is also important to determine the initial blank diameter in form rolling because it affects the quality of thread. The calculation method of the initial blank diameter in form rolling is suggested and it is verified by FE-simulation. The experiments using rack dies and roll dies are performed under the same conditions as those of simulation. The results of simulation and experiment in this study show that the from rolling process of worm shaft using the rack dies is decidedly superior to that using rolling dies from the aspect of the surface roughness and the profile of worm.

  • PDF

자동차용 일체형 유니버셜 샤프트 조인트의 냉간단조 공정 유한요소해석 (Finite Element Analysis on the Cold Forging Process of the Unified Universal Shaft Joint for the Automobile)

  • 권혁홍;송승은;김오승
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.582-588
    • /
    • 2011
  • This study was aimed at the design of the dies for the unified shaft joint using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.