• 제목/요약/키워드: DEFORM

검색결과 463건 처리시간 0.023초

HDPE 관의 TEE 성형에 대한 유한요소해석 (Finite Element Analysis of TEE Forming for HDPE Pipe)

  • 왕창범;송두호;박용복
    • 한국산학기술학회논문지
    • /
    • 제7권3호
    • /
    • pp.298-307
    • /
    • 2006
  • 본 논문에서 HDPE 관의 일체형 TEE성형 공정은 강소성 유한요소 해석 프로그램인 DEFORM-3D를 이용하여 해석을 하였다. 이중 보온관에서 외관으로 사용되는 HDPE 관은 관을 통하여 흐르는 온수의 온도를 유지하기 위한 관으로, TEE는 주관에 가지관을 연결하여 열의 수송방향을 바꾸는 역할을 한다. TEE제작에 압출 용접(Extrusion Welding)을 사용하는 기존의 방법으로는 이음부에서 강도가 취약한 문제점이 발생하기 때문에 HDPE 관을 성형시켜 TEE 형태로 일체화시킨 후에 맞대기 용접(Butt Welding)을 하는 방식을 제안하였다. 열간과 냉간 성형 실험을 실시하였고, 초기 구멍 형태에 따른 모델 파라미터가 강소성 유한요소해석에 의해 규명되어 졌으며, 이는 실제의 제품 제조 공정에 적용되어 졌다.

  • PDF

유한요소법을 이용한 Al/Cu 층상복합재료의 압출공정해석 (Extrusion Process Analysis of Al/Cu Clad Composite Materials by Finite Element Method)

  • 김정인;강충길;권혁천
    • Composites Research
    • /
    • 제12권5호
    • /
    • pp.87-97
    • /
    • 1999
  • 층상복합재료란 이종재료들을 적층하여 계면에서 확산에 의하여 새로운 금속조직을 제어하는 것으로 정의한다. 기계적 성질이 다른 금속이 결합하여 서로의 단점을 보완·개선함으로써 재료의 기계적 성질을 한층 더 향상시킬 뿐만 아니라, 동시에 전기적 성질도 향상시킬 수 있는 재료로 그 종류는 다양하며 용도도 광범위하다. 본 연구에서는 Al/Cu 피복이종복합재료를 직·간적압출하는데 필요한 성형 조건을 도출하기 위하여 유한요소 상용 package인 DEFORM을 이용하여 이종복합재료의 거동해석을 수행하였다. 압출해석에 필요한 물성치를 구하기 위하여 본 연구에서 제조한 재료를 이용하여 압축실험을 수행하였으며, 압출방법, 압출온도, 피복재의 두께 등의 변화에 다른 이종복합재료의 거동을 파악하였다. 또한 해석결과를 바탕으로 이종복합재료의 열간압출실험의 결과와 비교·검토하였다.

  • PDF

회전압출다이를 이용한 압출가공에 관한 성형 해석 (Forming Simulation of the Extrusion Process by Rotating Extrusion Dies)

  • 박승민;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.124-127
    • /
    • 2004
  • In the previous experimental study about extrusion of circular product with four helical fins, it was known that product with helical fins may not to be rotated during extruding with rotating extrusion dies in spite of using twisted dies. According to the results of experiments with Plasticin material, it was anticipated that the extrusion load could be reduced if rotating dies could be used, because it needs high pressure in order to twist billet and form fin shape on the surface of product in the case of using conventional fixed helical dies. So, in this paper, according to the extrusion load analyzed by DEFORM-3D software, optimal rotational velocity of rotating dies can be obtained, and the twisting, angle of product can be analyzed during extruding product with helical fins in the case of two types of rotating of dies. The results of analysis by DEFORM-3D show that the twisting angle of product can be controlled by twisted angle of extrusion helical dies and the rotational velocity of helical dies.

  • PDF

멀티빌렛을 사용한 압출굽힘가공의 성형 해석 (Forming Simulation of Extru-Bending Process Using Multi-Billets)

  • 박대윤;진인태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.120-123
    • /
    • 2004
  • The bending phenomenon has been known to be occurred by the difference of velocity at the die exit. The difference of velocity at the die exit section can be obtained by the different velocity of billets inside die chamber after passing the multi-hole container. The curvature can be controlled by the two variables, the one of them is the different velocity of billets through the multi-hole container, the other is the difference of hole diameter. The bending phenomenon during extruding using four billets can be obtained by the difference of hole diameters in the multi-hole container or by the difference of relative velocity of billet inserted in the container. As results of DEFORM-3D analysis, it can be shown that bending can be obtained during extruding by the difference of relative velocity of two billets or by the difference of hole diameter, and the amount of curvature is increased by the difference of velocity and diameter. According to the shape of products, the curvature of rectangular section is bigger than the curvature of regular square section. And, it is estimated that, because the stress on the welding line is much higher than yield stress of material, the bonding of four billets can be obtained.

  • PDF

스퍼기어의 제조공정에 따른 치수변화와 잔류응력에 관한 연구 -냉간 단조기어와 기계가공기어 비교- (Dimensional Changes and Residual Stress of Spur Gear According to the Manufacturing Processes -Comparison of Cold Forging Part with Machining Part-)

  • 권용철;이정환;이춘만;이영선
    • 소성∙가공
    • /
    • 제16권8호
    • /
    • pp.575-581
    • /
    • 2007
  • The high dimensional accuracy of the cold forged part could be acquired by the accurate dimensional modification for the die, which is, the dimensional changes from the die through forged part to final part after heat treatment were considered. The experimental and FEM analysis are performed to investigate the dimensional changes from the die to final part on cold forged part, comparing with the machined gear. The dimension of forged part is compared with the die dimension at each stage, such as, machined die, cold forged part, and heat-treated-part. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the $DEFORM-3D^{TM}$. The analyzed residual stress of forged part is considered into the FE-analysis for heat treatment using the $DEFORM-HT^{TM}$. The effects of residual stress affected into the dimensional changes could be investigated by the FEA. Each residual stress of gears was measured practically by laser beam type measurement.

AZ31 마그네슘 합금의 온간 후방압출에서 변형특성과 결함성장에 관한 유한요소해석 (Finite Element Study on Deformation Characteristics and Damage Evolution in Warm Backward Extrusion of AZ31 Mg Alloys)

  • 윤덕재;김응주;이용신
    • 소성∙가공
    • /
    • 제16권8호
    • /
    • pp.614-620
    • /
    • 2007
  • Deformation characteristics and damage evolution during warm backward extrusion of bulk AZ31 Mg alloy were investigated using finite element analyses. AZ31 Mg alloy was assumed as a hardening viscoplastic material. The tensile tests of AZ31 Mg alloy in previous experimental works showed the ductile fracture even at the warm temperature of $175^{\circ}C$. In this study, damage evolution model proposed by Lee and Dawson, which was developed based on the growth of micro voids in hardening viscoplastic materials, was combined into DEFORM 2D. Effects of forming temperature, punch speed, extrusion ratio and size of work piece on formability in warm backward extrusion as well as on mechanical properties of extruded products were examined. In general, finite element predictions matched the experimental observations and supported the analyses based on experiments. Distributions of accumulated damage predicted by the finite element simulations were effective to identify the locations of possible fracture. Finally, it was concluded that the process model, DEFORM2D combined with Lee & Dawson#s damage evolution model, was effective for the analysis of warm backward extrusion of AZ31 Mg alloys.

고속 성형 공정의 바운싱 현상을 줄이기 위한 액중 방전 성형의 해석적 연구 (Numerical Study of Electrohydraulic Forming to Reduce the Bouncing in High Speed Forming Process)

  • 우민아;노학곤;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제25권4호
    • /
    • pp.261-267
    • /
    • 2016
  • High-speed forming process is the forming technology that deforms the blank in a very short time, with the strain rate of the blank above 1000 s−1. Among many high-speed forming processes, electromagnetic forming (EMF) employs the Lorentz force when deforms the blank. Because of the high strain rate, the formability of the blank can be improved. However, when the blank is formed into rather complex shapes, it is bounced from the die and the wrinkles are generated. Therefore, electrohydraulic forming (EHF) is suggested in this study to reduce the bouncing problem of the blank. EHF is a high-speed forming that uses high voltage discharge in liquid. The shockwave resulting from the electric discharge propagates to the blank and it deforms the blank into the die. In this study, two high-speed forming processes, EMF and EHF were compared numerically with trapezoidal middle block die. This comparison showed that EMF cannot deform the blank into the die because of the bouncing, while EHF can overcome the bouncing problem and deform the blank into the die shape successfully.

유체 유동을 고려한 유동부를 갖는 용접부 형상의 마찰용접 해석 (Friction Welding Analysis of Welding Part Shape with Flow Gallery Considered Fluid Flow)

  • 염성호;김범년;홍성인
    • 한국추진공학회지
    • /
    • 제11권3호
    • /
    • pp.7-12
    • /
    • 2007
  • 마찰용접은 소재를 서로 마찰시켜 마찰열에 의해 용접하는 방법이다. 본 연구는 내부에 유동부를 갖는 부분을 마찰용접을 이용하여 용접했을 때 유체의 유동에 영향이 없는 유동부를 설계하는데 목적을 두고 있다. 용접부의 설계 변수를 결정하고 이에 대하여 마찰용접 해석을 DEFORM-2D를 이용하여 해석을 수행하였다. 마찰용접 해석을 수행하기 위해 온도변화에 따른 마찰계수와 업셋 압력, 소재의 분당회전수, 그리고 유동응력을 입력해 주었다. 해석결과에 따라서 유동에 영향이 없는 용접부의 최적형상을 결정하였다.

비선형 열전달 계수를 사용한 알루미늄 6082 빌렛의 열간 압축 공정 해석 (Analysis of Hot Compression Process of Aluminum 6082 Billet using Nonlinear Heat Transfer Coefficient)

  • 전효원;서창희;권태하;박춘달;전진호;최현열;강경필
    • 소성∙가공
    • /
    • 제28권1호
    • /
    • pp.5-14
    • /
    • 2019
  • In order to reduce the weight of automobile parts, automobile parts using aluminum alloy are being developed. Aluminum alloy for automobile parts is mainly made of Al6xxx (Al-Mg-Si) type alloy, which is excellent in hot forming property, and it can increase mechanical properties by the use of heat treatment. In this study, hot forming was performed using Al6082. Before the hot forming, the forming analysis was performed using the DEFORM-3D finite element analysis program in this case. For the forming analysis, the heat transfer coefficient was derived from the experiment, and the forming analysis was performed by applying it. At the forging analysis, the temperature of Al6082 material was set to 813K and that of the mold was set to room temperature. After the forging analysis, the experiment was performed, and the forging analysis and the experimental results were compared.

요소제거기법에 의한 판재 전단가공의 유한요소 시뮬레이션 (Finite Element Simulation of Sheet Metal Shearing by the Element Kill Method)

  • 고대철;김철;김병민;최재찬
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.114-123
    • /
    • 1996
  • The major objective of the present paper is to estabilish analytical technique in order to closely understand and analyze the actual shearing process. First of all, isothermal and non-isothermal FE-simulation of the shearing process are carried out using finite element software DEFORM. Based on preliminary simulation using DEFORM, the finite element program to analyze two dimensional shearing process is developed. The ductile fracture criterion and the element kill method are also used to estimate if and where a fracture will occur and to investigate the features of the sheared surface in shearing process. It can be seen that the developed program combined with the ductile fracture criterion and element kill method has enabled the achievement of FE-simulation from initial stage to final stage of shearing process. The effects of punch-die clearance on shearing process are also investigated. In order to verify the effectiveness of the proposed technique the simulation results are compared with the known expermental data. It is found that the results of the present work are in close agreement with the published experimental results.

  • PDF