• Title/Summary/Keyword: DEAS

Search Result 94, Processing Time 0.026 seconds

The Structural Analysis and Experimental Verification for the Next Generation High Speed EMU (분산형 고속전철의 하중조건에 따른 정적 하중시험 평가)

  • Choi, Jeong-Yong;Jeong, Won-Wha;Park, Geun-Soo;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.307-313
    • /
    • 2011
  • Hyundai Rotem Company has designed and manufactured the next generation high speed EMU bodyshell (M3-car). Korean Railway Safety Law specifies the loads vehicle bodies shall be capable of withstanding, identifies what material data shall be used and presents the principles to be used for design verification by analysis. Therefore, in order to fulfill the structural requirements, Hyundai Rotem Company has carried out Finite Element Analysis (FEA) and static load test to verify whether the carbody structure has enough strength to withstand the loads specified by Korean Railway Safety Law. This research contains the results obtained by the FE analysis and static load test. The FE analysis is carried out using NX I-DEAS 6.1 and specially designed test jigs and equipment are used for the load tests.

  • PDF

Gain Tuning of PID Controllers with the Dynamic Encoding Algorithm for Searches(DEAS) Based on the Constrained Optimization Technique

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.13-18
    • /
    • 2003
  • This paper proposes a design method of PID controllers in the framework of a constrained optimization problem. Owing to the popularity for the controller's simplicity and robustness, a great deal of literature concerning PID control design has been published, which can be classified into frequency-based and time-based approaches. However, both approaches have to be considered together for a designed PID control to work well with a guaranteed closed-loop stability. For this purpose, a penalty function is formulated to satisfy both frequency- and time-domain specifications, and is minimized by a recet nonlinear optimization algorithm to attain optimal PID control gains. The proposed method is compared with Wang's and Ho's methods on a suite of example systems. Simulation results show that the PID control tuned by the proposed method improves time-domain performance without deteriorating closed-loop stability.

  • PDF

PID Control Design with Exhaustive Dynamic Encoding Algorithm for Searches (eDEAS)

  • Kim, Jong-Wook;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.691-700
    • /
    • 2007
  • This paper proposes a simple but effective design method of PID control using a numerical optimization method. In order to achieve both stability and performance, gain and phase margins and performance indices of step response directly compose of the cost function. Hence, the proposed approach is a multiobjective optimization problem. The main effectiveness of this approach results from the strong capability of the used optimization method. A one-dimensional example concerning gain margin illustrates the practical applicability of the optimization method. The present approach has many degrees of freedom in controller design by only adjusting related weight constants. The attained PID controller is compared with Wang#s and Ho#s methods, IAE, and ISE for a high-order process, and the simulation result for various design targets shows that the proposed approach achieves desired time-domain performance with a guarantee of frequency-domain stability.

The Analysis of H-Shape Rolling by the Finite Element Method (유한요소법에 의한 H형강 압연공정의 해석)

  • 신현우;김낙수;박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1095-1105
    • /
    • 1993
  • Shape rolling processes to produce H-section beams are numerically simulated by the simplified three-dimensional finite element method. The 2-dimensional finite element method, used for the generalized plane strain condition, is combined with the slab method. Computer simulation results of the 19-passes in H-section beam rolling in practice include the grid distortions, the cross-sectional area changes, the roll separating forces, and the roll torques. Also, the amount of side spread can be found during the multi-pass rolling simulations. The finite element mesh system is remeshed with I-DEAS whenever the billet distorts severely. This study would contribute to CAD/CAM of shape rolling process through the optimal roll pass schedule.

Automatic Generation of CAD/CAE Model for a Stamping Die Rounding Optimization (스탬핑 금형의 라운딩 형상 최적화를 위한 CAD/CAE 모델 자동 생성)

  • Lee, Kang-Soo;Lee, Sang-Hun;Yin, Jeong-Je
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.269-274
    • /
    • 2001
  • In order to reduce trial-and-errors in the die design and production, CAE systems for analysis of stamping tools have been introduced at the initial design stage recently. For optimal design, the CAE engineers may need to correct the meshes generated by automatic mesh generation programs. However, they may need help of CAD engineers as they are usually not skilled in manipulation of CAD systems. In order to get around these problems, automatic shell mesh modification method is proposed, which utilizes existing CAD/CAE package (in this study, I-DEAS) without user interaction. The developed method and optimization techniques are applied to a stamping die rounding optimization problem. The optimization results show that the manpower and the time required at virtual tryout can be reduced by using the developed systems.

  • PDF

On Study the Safety Assessment of Accident Electric Multiple Units (전동차 구조체의 안전성 평가 연구)

  • 정종덕;김정국;편장식;김원경;홍용기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1105-1108
    • /
    • 2004
  • This paper describes the structural analysis result and load test result of accident EMU(Electric Multiple Units). Structural analysis and load test of EMU were performed for the criteria of safety assessment. Structural analysis using commercial I-DEAS software provided important information on the stress distribution and load transfer mechanisms as well as the amount of damages during rolling stock crash. The purpose of the load test is to evaluate a safety which carbody structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. The results have been used to provide the critical information for the criteria of safety assessment.

  • PDF

Vibration Analysis on the Variable Configurations of Tube Conveying Fluid (유체가 흐르는 튜브 라인의 기하학적 형상에 따른 진동해석)

  • 유계형;김영권;신귀수;박태원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.25-30
    • /
    • 2001
  • This paper studies the effect of vibration characteristics of tube line conveying fluid with the power steering system of bus. We modelled fluid-filled tube line using I-DEAS software to investigate vibration characteristics of the power steering tube line. And we obtained the natural frequency of tube line through finite element analysis. Analytic solutions were compared with experimental solutions to verify finite element model. We tested the tube line to examine an effect of pressure pulse by vane pump and variation of geometry of tube. From both the experimental results and the modeling results for vibration characteristics of the tube line conveying fluid, we confirmed that vibration characteristics induced by pulse propagated along the power steering tube line and resonance occurred around the natural frequency with pulse excitation.

  • PDF

Structural Design of a Movable Bearing Shoe for Large Bridge Using Three Dimensional Finite Element Method (3차원 유한요소법을 이용한 장대교량용 가동받침 설계)

  • Cho, Jong-Rae;Lee, Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.51-57
    • /
    • 1999
  • Recently, long large bridges are built for mass transportation. Movable bearing shoes are important components of the bridges because they support movement of translation and rotation of bridge. In design stage of the long large bridges, detailed analyses using the finite element method are performed to guarantee safety and reliability. For that purpose, three-dimensional modeling is carried out by I-DEAS software and finite element analysis by ANSYS software. Results of the analyses are reviewed and important design factors for movable bearing shoes are discussed.

  • PDF

Feature based modeling system for design and analysis for tank (체계구성 자동화 및 성능 분석 인터페이스 프로그램 개발)

  • 기동우;조주형;강주협;금동정;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.711-715
    • /
    • 1995
  • In the concept design stage of the product design process, it is desirable that a designer makes alternative designs sufficiently, examines and analyzes them, and finally determines an appropriate design. To efficiently investigate several alternative designs, it should be facilitated to modify the model and transfer the model data to analysis program. In this research, a concept design process for tank is automated using I-DEAS feature-based modeling system from SDRC. Additionally, the facility for the pre-estimation of the performance of product, the useful volume calculation, the mass calculation, the confirmation of the allowable workspae, and the interface to analysis propram are developed using API functions of OPen-link and Open-data. Graphic User Interface (GUI) makes it extrmely easy to utilize functions.

  • PDF

Exact solution for free vibration of curved beams with variable curvature and torsion

  • Zhu, Li-Li;Zhao, Ying-Hua;Wang, Guang-Xin
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.345-359
    • /
    • 2013
  • For the purpose of investigating the free vibration response of the spatial curved beams, the governing equations are derived in matrix formats, considering the variable curvature and torsion. The theory includes all the effects of rotary inertia, shear and axial deformations. Frobenius' scheme and the dynamic stiffness method are then applied to solve these equations. A computer program is coded in Mathematica according to the proposed method. As a special case, the dynamic stiffness and further the natural frequencies of a cylindrical helical spring under fixed-fixed boundary condition are carried out. Comparison of the present results with the FEM results using body elements in I-DEAS shows good accuracy in computation and validity of the model. Further, the present model is used for reciprocal spiral rods with different boundary conditions, and the comparison with FEM results shows that only a limited number of terms in the resultant provide a relatively accurate solution.