• Title/Summary/Keyword: DEAS

Search Result 93, Processing Time 0.019 seconds

Vibration Characteristics of the PWR Fuel Rod Supported by New Doublet Spacer Grids (새이중판 지지격자로 지지된 경수로용 연료봉의 진동특성)

  • 최명환;강흥석;윤경호;김형규;송기남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.905-910
    • /
    • 2003
  • One of the methods that are used to compare and verify the supporting performance of the spacer grids developed is the vibration characteristic test. A modal test in this paper is performed for a dummy rod 3,847mm tall supported by eight New Doublet (ND) spacer grids. For the vibration test in air, nine accelerometers, one displacement sensor and one shaker are used for acquiring signals, and an I-DEAS TDAS software is employed for analyzing the signals. Also, a finite element (FE) analysis is performed by a beam-spring simple model and a contact model simulating the contact phenomenon between the rod and the fm spring. And then, the result of the FE analysis is compared with that of the modal test. The natural frequencies as well as the mode shapes calculated by the proposed contact models have a greater similarity to the test results than those by the previous beam-spring model. In addition, for grasping whether or not the modal parameters are influenced by where shaking spot is, two kinds of tests are performed; one is for the shaker attached at the fourth span (center), the other is for the shaker at the fifth span that is one span nearer to the bottom of the rod. The latter shows higher MAC than the former. Finally, the vibration displacements are measured in the range of 0.112-0.214mm for the excitation force of 0.25-0.75 N.

  • PDF

Identification of DEA Determinant Input-Output Variables : an Illustration for Evaluating the Efficiency of Government-Sponsored R&D Projects (DEA 효율성을 결정하는 입력-출력변수 식별 : 정부지원 R&D 과제 효율성 평가를 위한 실례)

  • Park, Sungmin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.1
    • /
    • pp.84-99
    • /
    • 2014
  • In this study, determinant input-output variables are identified for calculating Data Envelopment Analysis (DEA) efficiency scores relating to evaluating the efficiency of government-sponsored research and development (R&D) projects. In particular, this study proposes a systematic framework of design and analysis of experiments, called "all possible DEAs", for pinpointing DEA determinant input-output variables. In addition to correlation analyses, two modified measures of time series analysis are developed in order to check the similarities between a DEA complete data structure (CDS) versus the rest of incomplete data structures (IDSs). In this empirical analysis, a few DEA determinant input-output variables are found to be associated with a typical public R&D performance evaluation logic model, especially oriented to a mid- and long-term performance perspective. Among four variables, only two determinants are identified : "R&D manpower" ($x_2$) and "Sales revenue" ($y_1$). However, it should be pointed out that the input variable "R&D funds" ($x_1$) is insignificant for calculating DEA efficiency score even if it is a critical input for measuring efficiency of a government-sonsored R&D project from a practical point of view a priori. In this context, if practitioners' top priority is to see the efficiency between "R&D funds" ($x_1$) and "Sales revenue" ($y_1$), the DEA efficiency score cannot properly meet their expectations. Therefore, meticulous attention is required when using the DEA application for public R&D performance evaluation, considering that discrepancies can occur between practitioners' expectations and DEA efficiency scores.

Development of Response Spectrum Generation Program for Seismic Analysis of the Nuclear Equipment (원자력기기 내진해석응답스펙트럼 생성프로그램 개발)

  • Byun, Hoon-Seok;Kim, Yu-Chull;Lee, Joon-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.755-762
    • /
    • 2004
  • In our country, when the replacement for individual components of equipment in nuclear power plants is required, establishment of individual criteria i.e. Required Response Spectra(RRS) of seismic test/analysis for the component is very difficult because of the absence of Test Response Spectra(TRS) for the individual component to be replaced, from the existing qualification documents. In this case, it is required to perform the structural analysis for the nuclear equipment including the components to be replaced. After the structural analysis, Analysis Response Spectra(ARS) at the point of the component shall be generated and used for seismic test of the component. However, as of today, no standard program authorized for the response spectra generation by using the structural analysis exists in korea. Because of above reason, the STAR-Egs computer program was developed by using the method which calculates directly the expected response spectrum(frequency vs. acceleration type) of the selected points in the nuclear equipment with input spectrum(Required Response Spectra, RRS), based on the dynamic characteristics of the Finite Element(FE) model that is equivalent to the nuclear equipment. The STAR-Egs controls ANSYS/I-DEAS commercial software and automatically extract modal parameters of the FE model. The STAR-Egs calculates response spectrum using the established algorithm based on the extracted modal parameters, too. Reliance on the calculation result of the STAR-Egs was verified through comparison output with the result of MATLAB commercial software based on the identical algorithm. Moreover, actual seismic testing was performed as per IEEE344-1987 for the purpose of program verification by comparison of the FE analysis results.

  • PDF