• Title/Summary/Keyword: DEAE cellulose

Search Result 397, Processing Time 0.022 seconds

Purification and Some Properties of the polyphenol Oxidase form Ascidian, Halocynthia roretzi

  • Jeon, Byeong-Jun;Lee, Kang-Ho;Ryu, Hong-Soo;You, Byeong-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.111-116
    • /
    • 1996
  • Polyphenol oxidase(PPO) isolated from the crude extract of ascidian, Halocynthia roretzi, showed higher affinity for catechol than tyrosine or DL-DOPA. Successful enzyme assay could be performed at $25^{\circ}C$, 10min. by mixing 0.2ml of crude enzyme extract with 2.8ml of 0.13M catechol in 0.1M sodium phosphate buffer(pH 6.4). The specific activity of PPO which had been purified with a combination of ammonium sulfate treatment, ion exchange chromatography on DEAE-cellulose, and gel filtration on Sepharose 6B was 13-fold disc gel electrophoresis. The activity of PPO was stable from pH 5.0 to 8.0 and showed the peak activity at pH 6.4 .The optimum reaction temperature for PPO oxidation on catechol was 35$^{\circ}C$ and those enzyme were heat stable up to 4$0^{\circ}C$. Molecular weigth of the enzyme was estimated about 170kDa. One molecule was found to be composed of gour subunits. Two of them had molecular weigh of 55kDa and the others 30kDa. The {TEX}$K_{m}${/TEX} values, {TEX}$V_{max}${/TEX} and catalytic efficiency({TEX}$V_{max}${/TEX}/{TEX}$K_{m}${/TEX}) for catechol were 0.12mM, 2.5mM/liter/min. and {TEX}$0.18min^{-1}${/TEX} respectively. The substrate affinity and electrophorectic pattern suggested that the enzyme of ascidian was considered to be not tyosine but catechol oxidase.

  • PDF

Purification and Characterization of Metalloprotease from Serratia marcescens PPB-26 and Its Application for Detergent Additive

  • Thakur, Shikha;Sharma, Nirmal Kant;Thakur, Neerja;Bhalla, Tek Chand
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.259-268
    • /
    • 2019
  • In this study, the extracellular metalloprotease from Serratia marcescens PPB-26 was purified to homogeneity via ethanol fractionation and DEAE-cellulose column chromatography. Thus, a 3.8-fold purification was achieved with a 20% yield and specific activity of 76.2 U/mg. The purified protease was a 50-kDa monomer whose optimum pH and temperature for activity were 7.5 and $30^{\circ}C$ respectively; however, it was found to remain active in the 5-9 pH range and up to $40^{\circ}C$ for 6 h. The protease had a half-life of 15 days at $4^{\circ}C$, an optimum reaction time of 10 min, and an optimum substrate (casein) concentration of 0.25%. Furthermore, the Michaelis constant ($K_m$) and reaction velocity ($V_{max}$) of the protease were calculated to be 0.28% and $111.11{\mu}moles/(min{\cdot}mg)^{-1}$, respectively. The protease was stable when subjected to metal ions (2 mM), showing increased activity with most (especially $CoCl_2$ and $MgSO_4$ (30.54% increase)). It was also stable when exposed to oxidizing agents, bleaching agents, and detergents (5% v/v for 60 min). It retained 93% of its activity in non-ionic detergents (Tween-20, Tween-80, and Triton X-100). Moreover, wash performance analysis in commercial detergents (Ariel and Tide) showed that not only was the protease capable of protein stain removal, but also reduced cleaning time by 80% when added to detergents. Thus, the Serratia marcescens PPB-26 metalloprotease appears to be a promising new candidate as a laundry additive in the detergent industry.

Purification and Characterization of $\beta$-Cyclodextrin Glucanotransferase Excreted by Bacillus firmus var. aikalophilus. (호알칼리성 Bacillus firmus가 생산하는 $\beta$-Cyclodextrin Glucanotransferase의 정제 및 효소반응 특성)

  • Shin, Hyun-Dong;Kim, Chan;Lee, Yong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.323-330
    • /
    • 1998
  • Cyclodextrin glucanotransferase (CGTase) was purified from the culture broth of the Bacillus firmus var. alkalophilus, using ultrafiltration, starch adsorption/desorption, ion-exchange chromatography on DEAE-cellulose and gel filtration on Sephacryl HR-100. The molecular weight of the purified enzyme was determined as 77,000 by SDS-PAGE. The optimum pH and temperature for the CD synthesis were 6.0 and 5$0^{\circ}C$, respectively. The activity of this enzyme was stably kept at the range of pH 6.0~9.5 and up to 5$0^{\circ}C$. However, in the presence of $Ca^{2+}$, the optimum temperature for CD synthesis was shifted 55~6$0^{\circ}C$ and this enzyme was stable up to 6$0^{\circ}C$ because of the stabilizing effect of $Ca^{2+}$. The purified CGTase produced CDs with high conversion yields of 45~51% from sweet potato starch, com starch and amylopectin as substrate, especially, and the product ratio of $\beta$-CD to ${\gamma}$-CD was obtained at range of from 5.8:1 to 8.4:1 according to the kind of substrate. The purified enzyme produced mainly $\beta$-CD without accumulation of $\alpha$-CD during enzyme reaction using various starches as the substrate, indicating that the purified enzyme is the typical $\beta$-CGTase. The purified CGTase produced 25 g/l of CDs from 5.0% (w/v) liquefied com starch and the conversion yield of CDs was 50%, and the content of $\beta$-CD was 84% of total CDs after 8 hours under the optimum reaction condition.ion.

  • PDF

Purification and Enzymatic Characteristics of the Bacillus pasteurii Urease Expressed in Escherichia coli (Escherichia coli에서 발현된 Recombinant Bacillus pasteurii Urease의 정제 및 효소학적 특성)

  • 이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.519-526
    • /
    • 1992
  • The gene coding for urease of alkalophilic Bacillus pasteurii had been cloned in Escherichia coli previously. The urease protein was purified 63.1-fold by TEAE-cellulose, DEAE-Sephadex A-50, Sephadex G-150 and Sephadex G-200 chromatographies with a 7.3% yield from the sonicated fluid of the E. coli HB1Ol(pBUll) encoding B. pasteurii urease gene. The ureases of E. coli (pBUll) and B. pasteurii possessed as a $K_m$ for urea, 42.1 mM and 40.4 mM, respectively. They hydrolyzed urea with $V_{max}$ of 86.9$\mu$mol/min and 160$\mu$mol/min, respectively. Both ureases were composed with four subunits (Mrs 67,000) and a subunit (Mr 20,000). The molecular weight of both native enzymes was Mr 280,OOO$pm$10,000 determined by gel filtration chromatography and Coomassie blue staining of the subunits. The optimal reaction pH of both ureases were pH 7.5. The ureases were stabled in pH 5.5-10.5. The optimal reaction temperature of both ureases were $60^{\circ}C$, and the ureases were stable for an hour at $50^{\circ}C$, 40min at $60^{\circ}C$ and 10 min at $70^{\circ}C$ The activity of both enzymes were inhibited completely by $Ag^{2+}$, $Hg^{2+}$, $Zn^{2+}$, $Cu^{2+}$, and were inhibited 60% by CoH, 30% by $Fe^{2+}$ and 10% by $Pb^{2+}$. However it was increased by the addition of $Sn^{2+}$, $Mn^{2+}$, $Mg^{2+}$ at concentration of $1{\times}10^{-3}$M. Both ureases were inhibited completely by p-CMB and acetohydroxamic acid. The urease expressed in E. coli (pBU11) was inhibited 70% by SDS. The urease of B. pasteurii was inhibited 40% by hydroxyurea, whereas the recombinant urease of E. coli strain was inhibited 17%. Both enzymes were not inhibited by cyclohexanediaminetetraacetic acid (CDTA) and ethylendiaminetetraacetic acid (EDTA).

  • PDF

Purification of Thiazole- and Pyrazine-inducible Microsomal Epoxide Hydrolase: Induction of Epoxide Hydrolase-related Novel 43 kDa Protein (Thiazole 또는 Pyrazine유도성 Microsomal Epoxide Hydrolase의 순수정제: Epoxide Hydrolase-관련성 43 kDa 단백질의 유도증가)

  • Kim, Sang-Geon
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.275-282
    • /
    • 1993
  • Liver microsomal epoxide hydrolase (mEH) is active in the detoxification of epoxide-containing reactive intermediate. Previous studies in this laboratory have shown that thiazole and pyrazine are efficacious inducers of mEH in rats with large increases in mEH mRNA levels (Carcinogensis, Kim et al, 1993). mEH was purified to electrophoretic homogeneity from thiazole-induced rat hepatic microsomes using DEAE-cellulose column chromatography whereas another protein $({\sim}43\;kDa)$ was co-purified with mEH from pyrazine-induced rat hepatic micrsomes (200 mg/kg body weight/day, ip, 3d). The antibody raised from a rabbit against mEH protein purified from thiazole-induced rat hepatic microsomes appeared to specifically recognize mEH protein in rat hepatic microsomes, as assessed by immunoblotting analysis. Immunoblotting analyses revealed a 10- and 7-fold increase in mEH levels in the hepatic microsomes isolated from thiazole- and pyrazine-treated rats, respectively. Moreover, immunoblotting analysis showed cross-reactivity of the mEH antibody with a 43 kDa protein in pyrazine-induced rat hepatic microsomes and with co-purified 43 kDa protein in purified fractions. The ratio between the 43 kDa protein and mEH in pyrazine-induced rat microsomes or in purified fractions was ${\sim}1$ to 15. N-terminal amino acid sequence analysis of both purified rat mEH and 43 kDa protein revealed that 10 out of 12 amino acids in N-terminus of the 43 kDa protein were identical with the mEH sequence with two amino acid residues of the 43 kDa protein undetermined. Either thiazole or pyrazine treatment, however, failed to increase the levels of mEH protein in rabbits while pyrazine caused elevation of the 43 kDa protein in this species, as determined by irnrnunoblotting analysis. These results demonstrated that treatment of rats with either thiazole or pyrazine causes elevation in hepatic mEH expiession whereas pyrazine treatment results in induction of another mEH-related 43 kDa protein and that a distinct species difference exists between rats and rabbits in the induction of mEH by these xenobiotics.

  • PDF

Characteristic Properties of Fucoidan Sulfate Purified from Gompi, Ecklonia stolonifera (곰피에서 정제한 Fucoidan Sulfate의 특성)

  • Lee, Hong-Soo;Jin, Sung-Hyun;Kim, Hee-Sook;Ryu, Byung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.716-723
    • /
    • 1995
  • The fucoidan purified from Korean brown seaweed, Ecklonia stolonifera was characterized on molecular structure and blood anticoagulant activities. Extraction was conducted at $100^{\circ}C$ with water and repeated twice. The crude fucodian was 151.1g out of 20.0 kg of Ecklonia stolonifera. The Fucoidan-1, which was purified from crude fucoidan using calcium chloride and cetyl pyridium chloride (CPC), was 35.2% against crude fucoidan. Fucoidan-5 was obtained approximately 28.1% from Fucoidan-1 through DEAE-Toyopearl 650 M ion-exchange column chromatography and showed one band by cellulose acetate electrophoresis. The molecular weight of Fucoidan-5 was estimated to be about 21,000∼23,000 dalton by Sephacryl S-300 gel filtration chromatography. Fucoidan-5 consists of 35.7% of fucose and 4.3% of galactose and the molar ratio of fucose and sulfate was about one to one. IR spectrum of Fucoidan-5 showed absorption at $1240\;cm^{-1}\;and\;850\;cm^{-1}$ and specific rotation value, $[\alpha]$, was $[\alpha]$. These results suggests that the sulfate maybe bind at $C_{4}$ carbon on ${\alpha}-L-fucose$. Gas chromatograph of methyl alditol acetate revealed that Fucoidan-5 is a fucose containing sulfated polysaccharide with $({\alpha}l-2)\;or\;({\alpha}l-2)$ glycosidic linkage. Anti-thrombin activity of the Fucoidan-5 was estimated as 1.4 time stronger than heparin. From above results, the purification methods using CPC and ion exchange chromatography is effective tools for obtaining highly purified fucoidan from Gompi, Ecklonia stolonifera.

  • PDF

Uptake of Heavy Metal Ions by Water Dropwort (Oenanthe stolonifera DC.) and Identification of Its Heavy Metal-Binding Protein (미나리의 중금속 흡수량 측정 및 중금속 결합단백질의 동정)

  • Park, Young-Il;Kim, Hee-Guen;Kim, Yoo-Young;Kim, In-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.494-500
    • /
    • 1996
  • Uptake of hen metal ions by water dropwort (Oenanthe stolonifera DC.) and its cadmium-binding protein were studied to probe for good method to remove heavy metal contaminants from environments. The plant was cultured in the culture medium (pH 7.0) containing the various concentrations of $Cd^{2+}$, $Cr^{3+}$ or $Pb^{2+}$, for 3 and 7 days. The residual heavy metals deposited in roots linearly increased as the metal ions concentration increased up to 17 ppm for $Cd^{2+}$, 20 ppm for $Cr^{3+}$ and 50 ppm for $Pb^{2+}$. Above these concentrations, the plant growth was inhibited and the uptake rates of the metal ions decreased. The heavy metals absorbed by the plant were mostly deposited in roots. In particular, the residual concentration of lead in roots was about four times higher than those of cadmium and chromium. When cultured in the medium containing 20 ppm of each metal ion, 80% of cadmium, 90% of cromium and 96% of lead were deposited in roots out of the total residual metal ions in the plant. These values correspond to 6.1 mg of cadmium, 5.2 mg of chromium and 23.6 mg of lead per one gram of roots tissue on a dry weight basis. A cadmium-binding protein was partially purified by extraction, gel filtration and DEAE-Cellulose chromatography from water dropworts that was grown in the medium containing 20 ppm $Cd^{2+}$. The purified protein was a single band on SDS- and non-denaturing- polyacrylamide gel electrophoresis. Its molecular mass was estimated to be ca. 5,000 dalton by gel filteration. Analysis of amino acid composition of the protein indicated that it had a typical amino acid composition of heavy metal-binding protein in that it contained 27% of acidic amino acids and 9.9% of cysteine. However, it is likely that the protein is a new plant metal-binding protein, since its amino acid composition is somewhat different from those of phytochelatins that have been known so far.

  • PDF

Purification and Characterization of the Red Carotenoprotein from the Muscle of Blue Mussel, Mytilus edulis (진주담치 근육중의 적색 Carotenoprotein의 정제 및 특성)

  • YANG Huyn-Pil;LEE An-Jong;KIM Yong-Tae;KIM Se-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.482-494
    • /
    • 1994
  • Most of carotenoprotein complexes have been extracted by using buffered solutions. However, in this study carotenoprotein from the muscle of Blue mussel(Mytilus edulis) was extracted by a detergent such as Triton X-100. It was purified and characterized by $20\%$ (w/v) $(NH_4)_2SO_4$, DEAE-cellulose ion exchange and Sephacryl S-300 gel filtration. The carotenoprotein(${\lambda}_{max}=462nm$) had an approximate M. W. of 372KDa(gel filtration). SDS-PAGE analysis of the carotenoprotein indicated the presence of four polypeptides of 60KDa($23.70\%$), 46.9KDa($9.14\%$), 26KDa($49.14\%$) and 13KDa($18.02\%$). Carotenoprotein denaturated by treatment with SDS to a final concentration of $0.2\%$ (w/v) caused a hypsochromic shift of ${\lambda}_{max}$ from 462nm to 456nm. The carotenoprotein contained lipids as structure units. The amino acid composition of the carotenoprotein contained large essential amino acid amounts of $62.8\%$, and the content of threonine($35.9\%$) was higher than other amino acids, but histidine, methionine and proline were not present. In the carotenoprotein, the major fatty acids were $C_{16:4},\;C_{16:0},\;C_{20:5}\;and\;C_{22:6}$. The percentages of polyunsaturated fatty acids($62.4\%$) were higher compared to other fatty acids(saturated fatty acids $19.6\%$, monounsaturated fatty acids $18.0\%$). Carotenoid was extracted from the carotenoprotein by acetone and it was separated into five different components by preparative TLC(benzene:petroleum ether:acetone=69:17:14). The major components of carotenoid were mytiloxanthin($74.79\%$) and 3,4,3'- trihydroxy-7',8'-didehydro-${\beta}$-carotene($18.26\%$), and they were at least presented as prosthetic groups of carotenoprotein.

  • PDF

Characterization and β-secretase Inhibitory Activity of Water-soluble Polysaccharides Isolated from Phellinus linteus Fruiting Body (상황버섯 자실체로부터 분리된 수용성 다당류의 특성 분석 및 이의 베타 시크리타아제 활성 저해효과)

  • Jo, Hang Soo;Choi, Doo Jin;Chung, Mi Ja;Park, Jae Kweon;Park, Yong Il
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.229-234
    • /
    • 2012
  • A key molecule in the pathogenesis of Alzheimer's disease (AD) is the ${\beta}$-amyloid peptide ($A{\beta}$) generated by ${\beta}$-secretase activity, an aspartic protease. This study was designed to evaluate inhibitory effect of the high-molecular weight water-soluble polysaccharides (Et-P) isolated and purified from Phellinus linteus fruiting body on ${\beta}$-secretase activity. The Et-P was purified from the hot water extract of Phellinus linteus fruiting body mainly by 75% ethanol precipitation and DEAE-Cellulose column chromatography. From the DEAE-Cellulose chromato-gram and molecular weight analysis, the Et-P was shown to be a mixture of three polysaccharides with molecular mass of 1,629, 1,294, and 21 kDa, respectively. The monosaccharide composition of Et-P was determined to be glu-cose, galactose, and mannose as major sugars, glucose being the most prominent one (48% in mole percentage). The elemental analysis and FT-IR analysis suggested that Et-P is typical polysaccharides having at least partially ${\beta}$-linkages and possible existing as complex with phenolic compounds. The laminarinase digestion and HPAEC-PAD analysis suggested that Et-P is a variant of beta-(1,3)-glucans. The Et-P showed DPPH radical scavenging activity and, especially, a significant inhibitory activity on ${\beta}$-secreatase activity (48% inhibitin at 100 ${\mu}g/mL$), suggesting that they may inhibit the formation of $A{\beta}$ which is the major causative of Alzheimer's disease. The results of this study suggest that the water soluble polysaccharides of Phellinus linteus fruiting body can be a potent material for the development of preventive or therapeutic agents for AD.

Studies on the Cellulase produced by Myriococcum of albomyces (Myriococcum albomyces가 생산하는 Cellulase에 관한 연구)

  • Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.14 no.1
    • /
    • pp.59-97
    • /
    • 1971
  • As a study on the cellulase of Myriococcum albomyces the culture media for enzyme formation and properties of its crude preparation were investigated and the crude enzyme preparation was further fractionated. The results are summarized as follows: 1. Wheat bran solid culture produced stronger activities of cellulase than rice bran or defatted soy bean meal solid culture. 2. Shaking culture with wheat bran, rice bran or defatted soy bean meal produced higher cellulase activities than solid culture with the corresponding media. 3. The enzyme formation was higher at $45^{\circ}C$ than at $37^{\circ}C$ or $50^{\circ}C$ regardless of the kind of culture medium. 4. The formation of CMCase activity was more promoted by organic nitrogen source than inorganic nitrogen source. 5. The formation of cellulase activities were increased 1.5 to 3.0-fold by adding CMC, Avicel or cellulose powder as an inducer into 5% wheat bran basal medium. 6. Cellulase production using a tank culture procedure with addition of CMC or Avicel as an inducer was the highest at fifth day and thereafter decreased slightly. 7. The crude enzyme preparation showed pH optimum in 4.0 to 4.5, and pH stability in the range of 3.5 to 8.0. Optimum temperature for the activity was $65^{\circ}C$ which was higher than among other cellulases and it was stable at $60^{\circ}C$ for 120 minutes. 8. Dialyzed crude enzyme was activated by $Ca^{++}$ and $Mg^{++}$, but inhibited by $Hg^{++}$, $Cu^{++}$ and $Ag^{+}$. 9. Four different types of cellulase, i. e., fraction I, fraction II-a, fraction II-b, and fraction III were purified from the culture filtrate of Myriococcum albomyces through a sequence of ammonium sulfate fractionation, and elution chromatography on DEAE-Sephadex A-25, Amberlite CG-25 type 2 and hydroxyapatite columns. 10. These four cellulase fractions were showed to be homogenous by electrophoresis and ultracentrifugation and also gave a typical ultraviolet absorption spectrum of protein. 11. Four purified fraction showed different specificity toward substrates, fraction I has a stronger activity toward Avicel, cellulose powder, and gauze than that of other cellulase fractions. Fraction II-a had a powerful activity toward cellobiose but it was almost inactive agaisnt fibrous cellulose contrary to fraction I. On the contrary, the main component fraction II-b had a fairly higher activity on CMC and Avicel. Activity of fraction II-b toward cellobiose was about one-third of that of fraction II-a and activity on Avicel was lower than that of fraction I. Fraction III had a more powerful activity in decreasing viscosity of CMC. 12. Final hydrolysis products of fibrous cellulose by each fraction were cellobiose and glucose. Whereas oligosaccharides were predominant in the early stage of hydrolysis, prolonged reaction produced more glucose than cellobiose. Fraction I and fraction II-a acted synergically on Avicel. 13. Optimum pH for the activities of cellulase fraction I, fraction II-a, fraction II-b and fraction III were found to be 5.5, 5.0, 4.0 and $4.0{\sim}4.5$, respectively. These fractions were found to be stable in the range of pH $3.0{\sim}7.5$. 14. Optimum temperature for the activities of fraction I, fraction II-a, fraction II-b, and fraction III were $50^{\circ}C$, $55^{\circ}C$, $60^{\circ}C$ and $55^{\circ}C$, respectively. No less of activity was found by heating 120 minutes at $55^{\circ}C$ and fraction II-a was more stable than the others at $60^{\circ}C$. 15. Fraction I and fraction II-b were activated by $Ca^{++}$ and $Mg^{++}$ but inhibited by $Hg^{++}$ and $Ag^{+}$.

  • PDF