• Title/Summary/Keyword: DCXD(Double Crystal X-ray Diffraction)

Search Result 82, Processing Time 0.026 seconds

Growth and Photocurrent Study on the Splitting of the Valence Band for $CuInSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Walll Epitaxy (HWE)법에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Yun, Seok-Jin;Hong, Gwang-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.234-238
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuInSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62{\times}10^{l6}\;cm^{-3}$ and $296\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;1.1851\;eV\;-\;(8.99{\times}10^{-4}\;eV/K)T^2/(T+153K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuInSe_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}_{so}$ definitely exists in the $\Gamma_6$ states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth and optical conductivity properties for BaIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaIn2S4 단결정 박막 성장과 광전도 특성)

  • Jeong, Kyunga;Hong, Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2015
  • A stoichiometric mixture of evaporating materials for $BaIn_2S_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2S_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2S_4$ single crystal thin films measured from Hall effect by van der Pauw method are $6.13{\times}10^{17}cm^{-3}$ and $222cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.0581eV-(3.9511{\times}10^{-3}eV/K)T^2/(T+536K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2S_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2S_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{24}$-exciton peaks for n = 24.

Crystal field splitting energy for $CdGa_2Se_4$ epilayers obtained by photocurrent measurement (광전류 측정으로부터 얻어진 $CdGa_2Se_4$ 에피레이어의 결정장 갈라짐에 대한 에너지)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.144-145
    • /
    • 2009
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the poly crystal source of $CdGa_2Se_4$ at $630\;^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27\;\times\;10^{17}\;cm^{-3}$, $345\;cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.6400 eV - ($7.721\;{\times}\;10^{-4}\;eV/K)T^2$/(T + 399 K). Using the photocurrent spectra and the Hopfield quasi cubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-, and $C_{11}$-exciton peaks.

  • PDF

Photocurrent Properties and Growth of $CuAlSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $v_2$ 단결정 박막의 성장과 광전류 특성)

  • You, Sang-Ha;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.282-285
    • /
    • 2003
  • Single crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $410\;^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$ source at $680\;^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}\;and\;295\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.68\;{\times}\;10^{-4}eV/K)T^2/(T\;+\;155\;K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_2$ have been estimated to be 0.2026 eV and 0.2165 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\Delta$so definitely exists in the ${\Gamma}_5$ states of the valence band of the $CuAlSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth and study on photocurrent of valence band splitting for AgGaSe2 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 AgGaSe2 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Lee, Gyoan-Gyu;Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.397-405
    • /
    • 2006
  • Single crystal $AgGaSe_{2}$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_{2}$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $AgGaSe_{2}$ thin films measured with Hall effect by van der Pauw method are $4.05{\times}10^{16}/cm^{3}$, $139cm^{2}/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $AgGaSe_{2}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$=1.9501 eV-($8.79{\times}10^{-4}{\;}eV/K)T^{2}$/(T+250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_{2}$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}So$ definitely exists in the ${\Gamma}_{5}$ states of the valence band of the $AgGaSe_{2}$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-$, and $C_{1}-$exciton peaks for n=1.

Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.419-427
    • /
    • 2007
  • Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

Temperature dependence of photocurrent spectra for $AgGaSe_2$ single crystal thin film grown by hot wall epitaxy (Hot Wall Epitaxy(HWE) 법에 의해 성장된 $AgGaSe_2$ 단결정 박막의 광전류 온도 의존성)

  • Hong, Kwang-Joon;Bang, Jin-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.179-180
    • /
    • 2007
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $AgGaSe_2$ thin films measured with Hall effect by van der Pauw method are $4.05{\times}\;10^{16}/cm^3$, $139\;cm^2/V{\cdot}s$ at 293 K. respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.9501\;eV\;-\;(8.79{\times}10^{-4}\;eV/K)T^2$/(T + 250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_2$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the phcitocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}So$ definitely exists in the $\Gamma_5$ states of the valence band of the $AgGaSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth of $CuInSe_2$ single crystal thin film for solar cell development and its solar cell application (태양 전지용 $CuInSe_2$ 단결정 박막 성장과 태양 전지로의 응용)

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.1-11
    • /
    • 2005
  • The stoichiometric mixture of evaporating materials for the $CuInSe_2$ single crystal thin film was prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuInSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.783\;{\AA}$ and $11.621\;{\AA}$, respectively. To obtain the $CuInSe_2$ single crystal thin film, $CuInSe_2$ mixed crystal was deposited on throughly etched GaAs(100) by the HWE(Hot Wall Epitaxy) system. The source and substrate temperature were $620^{\circ}C$ and $410^{\circ}C$ respectively. The crystalline structure of $CuInSe_2$ single crystal thin film was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of Van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by impurity scattering in the temperature range 30 K to 100 K and by lattice scattering in the temperature range 100 K to 293 K. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.1851\;eV-(8.99{\times}10^{-4}\;eV/K)T^2/(T+153\;K)$. The open-circuit voltage, short current density, fill factor, and conversion efficiency of $n-CdS/p-CuGaSe_2$ heterojunction solar cells under $80\;mW/cm^2$ illumination were found to be 0.51V, $29.3\;mA/cm^2$, 0.76 and 14.3 %, respectively.

Growth of CaAl2Se4: Co Single Crystal Thin Film for Solar Cell Development and Its Solar Cell Application (태양 전지용 CaAl2Se4: Co 단결정 박막 성장과 태양 전지로의 응용)

  • Bang, Jin-Ju;Hong, Kwang-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.1
    • /
    • pp.25-36
    • /
    • 2018
  • The stoichiometric mixture of evaporating materials for the $CaAl_2Se_4$: Co single crystal thin film was prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CaAl_2Se_4$, it was found orthorhomic structure whose lattice constant $a_0$, $b_0$ and $c_0$ were 6.4818, $11.1310{\AA}$ and $11.2443{\AA}$, respectively. To obtain the $CaAl_2Se_4$: Co single crystal thin film, $CaAl_2Se_4$: Co mixed crystal was deposited on throughly etched Si (100) by the HWE (Hot Wall Epitaxy) system. The source and substrate temperature were $600^{\circ}C$ and $440^{\circ}C$ respectively. The crystalline structure of $CaAl_2Se_4$: Co single crystal thin film was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of Van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by impurity scattering in the temperature range 30 K to 100 K and by lattice scattering in the temperature range 100 K to 293 K. The temperature dependence of the energy band gap of the $CaAl_2Se_4$: Co obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.8239eV-(4.9823{\times}10^{-3}eV/K)T_2/(T+559K)$. The open-circuit voltage, short current density, fill factor, and conversion efficiency of $p-Si/p-CaAl_2Se_4$: Co heterojunction solar cells under $80mW/cm^2$ illumination were found to be 0.42 V, $25.3mA/cm^2$, 0.75 and 9.96%, respectively.

Growth and optical characterization of $CuInSe_2$ single crystal thin film for solar cell application (태양전지용 $CuInSe_2$단결정 박막 성장과 광학적 특성)

  • 백승남;홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.202-209
    • /
    • 2002
  • The stochiometric mix of evaporating materials for the $CuInSe_2$single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CuInSe_2$compound crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$single crystal thin films measured from Hall effect by van der Pauw method. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_2$single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr. From the photoluminescence measurement on $CuInSe_2$single crystal thin film, we observed free exciton ($E_x$) existing only high quality crystal and neutral bound exciton ($A^{\circ}$, X) having very strong peak intensity. Then, the full-width-at-half-maximum (FWHM) and binding energy of neutral donor bound exciton were 7 meV and 5.9 meV, respectivity. By haynes rule, an activation energy of impurity was 59 meV.