• 제목/요약/키워드: DCM boost

검색결과 68건 처리시간 0.022초

Compensation Technique for Current Sensorless Digital Control of Bridgeless PFC Converter under Critical Conduction Mode

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2310-2318
    • /
    • 2018
  • Critical conduction mode (CRM) operation is more efficient than continuous conduction mode (CCM) operation at low power levels because of the valley switching of switches and elimination of the reverse recovery losses of boost diodes. When using a sensorless digital control method, an error occurs between the actual and the estimated current. Because of the error, it operates as CCM or discontinuous conduction mode (DCM) during CRM operation and also has an adverse effect on THD of input current. In this paper, a current sensorless technique is presented in an inverter system using a bridgeless boosted power factor correction converter, and a compensation method is proposed to reduce CRM calculation error. The validity of the proposed method is verified by simulation and experiment.

단일전력단으로 구성된 고주파 공진 인버터에 관한 연구 (A Study on Single-Stage High Frequency Resonant Inverter)

  • 원재선;강진욱;김동희;정성균;이영식;이봉섭
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.750-753
    • /
    • 2002
  • A novel single-stage half-bridge high frequency resonant inverter using ZVS(Zero Voltage Switching) with high input power factor suitable for induction heating applications is presented in this paper. The proposed high frequency resonant Inverter integrates half-bridge boost rectifier as power factor corrector(PFC) and half-bridge resonant inverter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode (DCM) with constant duty cycle and variable switching frequency. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

A Three-Phase AC-DC High Step-up Converter for Microscale Wind-power Generation Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching;Chang, En-Chih
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1861-1868
    • /
    • 2016
  • In this paper, a three-phase AC-DC high step-up converter is developed for application to microscale wind-power generation systems. Such an AC-DC boost converter prossessess the property of the single-switch high step-up DC-DC structure. For power factor correction, the advanced half-stage converter is operated under the discontinuous conduction mode (DCM). Simulatanously, to achieve a high step-up voltage gain, the back half-stage functions in the continuous conduction mode (CCM). A high voltage gain can be obtained by use of an output-capacitor mass and a coupled inductor. Compared to the output voltage, the voltage stress is decreased on the switch. To lessen the conducting losses, a low rated voltage and small conductive resistance MOSFETs are adopted. In addition, the coupled inductor retrieves the leakage-inductor energy. The operation principle and steady-state behavior are analyzed, and a prototype hardware circuit is realized to verify the performance of the proposed converter.

Analysis, Design and Implementation of an Interleaved Single-Stage AC/DC ZVS Converters

  • Lin, Bor-Ren;Huang, Shih-Chuan
    • Journal of Power Electronics
    • /
    • 제12권2호
    • /
    • pp.258-267
    • /
    • 2012
  • An interleaved single-stage AC/DC converter with a boost converter and an asymmetrical half-bridge topology is presented to achieve power factor correction, zero voltage switching (ZVS) and load voltage regulation. Asymmetric pulse-width modulation (PWM) is adopted to achieve ZVS turn-on for all of the switches and to increase circuit efficiency. Two ZVS half-bridge converters with interleaved PWM are connected in parallel to reduce the ripple current at input and output sides, to control the output voltage at a desired value and to achieve load current sharing. A center-tapped rectifier is adopted at the secondary side of the transformers to achieve full-wave rectification. The boost converter is operated in discontinuous conduction mode (DCM) to automatically draw a sinusoidal line current from an AC source with a high power factor and a low current distortion. Finally, a 240W converter with the proposed topology has been implemented to verify the performance and feasibility of the proposed converter.

단일 전력단 능동 클램프형 고주파 공진 인버터의 특성 평가 (Characteristic Estimation of Single-Stage Active-Clamp Type High Frequency Resonant Inverter)

  • 원재선;강진욱;김동희
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권2호
    • /
    • pp.114-122
    • /
    • 2004
  • This paper presents a novel single-stage active-clamp type high frequency resonant inverter. The proposed topology is integrated full-bridge boost rectifier as power factor corrector and active-clamp type high frequency resonant inverter into a single-stage. The input stage of the full-bridge boost rectifier works in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a boost converter makes the line current follow naturally the sinusoidal line voltage waveform. By adding additional active-clamp circuit to conventional class-E high frequency resonant inverter, main switch of inverter part operates not only at Zero-Voltage-Switching mode but also reduces the switching voltage stress of main switch. Simulation results have demonstrated the feasibility of the proposed high frequency resonant inverter. Characteristics values based on characteristics estimation through circuit analysis is given as basis data in design procedure. Also, experimental results are presented to verify theoretical discussion. This proposed inverter will be able to be practically used as a power supply in the fields of induction heating applications, fluorescent lamp and DC-DC converter etc.

단일 전력단 고주파 공진 인버터 링크형 DC-DC 컨버터의 특성평가 (Characteristic Estimation of Single-Stage High Frequency Resonant Inverter Link Type DC-DC Converter)

  • 원재선;김해준;박재욱;남승식;서철식;김동희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1190-1192
    • /
    • 2003
  • This paper presents a novel single-stage high frequency resonant inverter link type DC-DC converter using zero voltage switching with high input power factor. The proposed high frequency resonant converter integrates half-bridge boost rectifier as power factor corrector (PFC) and half-bridge resonant converter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that boost converter make the line current follow naturally the sinusoidal line voltage waveform. Experimental results have demonstrated the feasibility of the proposed DC-DC converter. This proposed converter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

낮은 120Hz 출력 전류 리플을 갖는 역률개선 LED 구동 회로 (Power Factor Correction LED Driver with Small 120Hz Current Ripple)

  • 사공석진;박현서;강정일;한상규
    • 전력전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.91-97
    • /
    • 2014
  • Recently, the LED(Light Emitting Diode) is expected to replace conventional lamps including incandescent, halogen and fluorescent lamps for some general illumination application, due to some obvious features such as high luminous efficiency, safety, long life, environment-friendly characteristics and so on. To drive the LED, a single stage PFC(Power Factor Correction) flyback converter has been adopted to satisfy the isolation, PFC and low cost. The conventional flyback LED driver has the serious disadvantage of high 120Hz output current ripple caused by the PFC operation. To overcome this drawback, a new PFC flyback with low 120Hz output current ripple is proposed in this paper. It is composed of 2 power stages, the DCM(Discontinuous Conduction Mode) flyback converter for PFC and BCM(Boundary Conduction Mode) boost converter for tightly regulated LED current. Since the link capacitor is located in the secondary side, its voltage stress is small. Moreover, since the driver is composed of 2 power stages, small output filter and link capacitor can be used. Especially, since the flyback is operated at DCM, the PFC can be automatically obtained and thus, an additional PFC IC is not necessary. Therefore, only one control IC for BCM boost converter is required. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a prototype of 24W LED driver are presented.

부스트-플라이백 결합형 ZCS Quasi-Resonant 역률개선 컨버터 (Integrated Boost-Flyback ZCS Quasi-Resonant Power Factor Preregulator)

  • 이준영;문건우;김현수;윤명중
    • 전력전자학회논문지
    • /
    • 제4권1호
    • /
    • pp.91-98
    • /
    • 1999
  • 본 논문에서는 역률개선용 단일 스위치 부스트 플라이백 결합형 ZCS quasi-resonant converter(QRC)를 제안한다. 제안된 컨버터는 입력전류를 불연속 모드로 동작시켜 역률을 개선하며 입력전류의 zero-crossing-point에서의 왜곡을 개선함으로써 고조파를 감소시켜 역률을 향상시켰으며 좋은 출력전압의 regulation 성능을 가지고 있다. 그리고 체계적인 설계를 위하여 설계식을 제안하였으며 제안된 설계식을 통하여 프로토타입 컨버터를 설계하였다. 실험결과 효율은 약 86%, 역률은 약 0.985이상을 얻었다. 따라서 본 컨버터는 스위칭 주파수가 수백 kHz이상이고 높은 regulation성능을 요구하는 낮은 전압의 소용량 컨버터에 적합하다.

  • PDF

도통손실 저감형 역률 보상 AC/DC 컨버터 (A novel PFC AC/DC converter for reducing conduction losses)

  • 강필순;최철;박성준;김철우
    • 조명전기설비학회논문지
    • /
    • 제14권2호
    • /
    • pp.52-58
    • /
    • 2000
  • 본 논문애서는 2단 스위치 구조를 가져는 역률 보상 회로를 적용하여 도통 손실을 저감할 수 있는 새로운 결합형 1단방식 AC/DC half-bridge 컨버터에 대한 토폴라지를 제안하고, 이에 관한 전류 불연속 모드 제어와 소프트 스위칭 특성에 대하여 연구하였다. 도통손실의 저감은 기존의 역률 보상 회로 대신 새로운 형태의 이단 스위치 구조를 가지는 역률 보상 회로를 적용함으로써 이루어친다. 제안된 토폴라지의 타당성 검증을 위해서 입력전압 100[V], 출력전압 50[V]의 500[W]급 컨버터에 대한 시뮬레이션 결과를 제시하고 분석하였다.

  • PDF

고역률을 가지는 Single-Stage Half-Bridge 고주파 공진 인버터 (High Power-Factor Single-Stage Half-Bridge High Frequency Resonant Inver)

  • 원재선;김동희;서철식;조규판;오승훈;정도영;배영호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1196-1198
    • /
    • 2002
  • A novel single-stage half-bridge high frequency resonant inverter using ZVS(Zero Voltage Switching) with high input power factor suitable for induction heating applications is presented in this paper. The proposed high frequency resonant inverter integrates half-bridge boost rectifier as power factor corrector(PFC) and half-bridge resonant inverter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode (DCM) with constant duty cycle and variable switching frequency. So that a high power factor is achieved naturally. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF