• Title/Summary/Keyword: DCGAN

Search Result 32, Processing Time 0.038 seconds

GAN System Using Noise for Image Generation (이미지 생성을 위해 노이즈를 이용한 GAN 시스템)

  • Bae, Sangjung;Kim, Mingyu;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.700-705
    • /
    • 2020
  • Generative adversarial networks are methods of generating images by opposing two neural networks. When generating the image, randomly generated noise is rearranged to generate the image. The image generated by this method is not generated well depending on the noise, and it is difficult to generate a proper image when the number of pixels of the image is small In addition, the speed and size of data accumulation in data classification increases, and there are many difficulties in labeling them. In this paper, to solve this problem, we propose a technique to generate noise based on random noise using real data. Since the proposed system generates an image based on the existing image, it is confirmed that it is possible to generate a more natural image, and if it is used for learning, it shows a higher hit rate than the existing method using the hostile neural network respectively.

A Method for Generating Malware Countermeasure Samples Based on Pixel Attention Mechanism

  • Xiangyu Ma;Yuntao Zhao;Yongxin Feng;Yutao Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.456-477
    • /
    • 2024
  • With information technology's rapid development, the Internet faces serious security problems. Studies have shown that malware has become a primary means of attacking the Internet. Therefore, adversarial samples have become a vital breakthrough point for studying malware. By studying adversarial samples, we can gain insights into the behavior and characteristics of malware, evaluate the performance of existing detectors in the face of deceptive samples, and help to discover vulnerabilities and improve detection methods for better performance. However, existing adversarial sample generation methods still need help regarding escape effectiveness and mobility. For instance, researchers have attempted to incorporate perturbation methods like Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), and others into adversarial samples to obfuscate detectors. However, these methods are only effective in specific environments and yield limited evasion effectiveness. To solve the above problems, this paper proposes a malware adversarial sample generation method (PixGAN) based on the pixel attention mechanism, which aims to improve adversarial samples' escape effect and mobility. The method transforms malware into grey-scale images and introduces the pixel attention mechanism in the Deep Convolution Generative Adversarial Networks (DCGAN) model to weigh the critical pixels in the grey-scale map, which improves the modeling ability of the generator and discriminator, thus enhancing the escape effect and mobility of the adversarial samples. The escape rate (ASR) is used as an evaluation index of the quality of the adversarial samples. The experimental results show that the adversarial samples generated by PixGAN achieve escape rates of 97%, 94%, 35%, 39%, and 43% on the Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Convolutional Neural Network and Recurrent Neural Network (CNN_RNN), and Convolutional Neural Network and Long Short Term Memory (CNN_LSTM) algorithmic detectors, respectively.