• Title/Summary/Keyword: DCG

Search Result 45, Processing Time 0.021 seconds

Examination of the Impact of Blood Groups on Group Participation

  • Asgari, Omid
    • The Journal of Economics, Marketing and Management
    • /
    • v.3 no.2
    • /
    • pp.9-20
    • /
    • 2015
  • Could blood type provide a key to wellness and even affect our personality? The theory that blood type is linked to personality (and other mental and physical qualities) is popular mainly in Japan, though it has carried over to Taiwan and South Korea. The present study is the result of a scientific research in which the relationship between two important variables, namely blood group a nd group participation, are determined in the research framework. Based on some collected data from manufacturing firms which are accepted firms in Tehran Stock Exchange, and through cluster sampling a sample was selected. 380 questionnaires were distributed to the personnel of production line, of the firms then the reliability and validity of the questionnaires through independence test and average ratio comparison of the two population were examined, and through Pearson's chi-square formula, the relationship between blood group (independent variable) and group participation (dependent variable) were tested, then through Schuprow coefficient, the prioritization of blood groups over group participation was identified and the following results were obtained: people group participation is affected by their personality features which is derived from their temperament, mood, and characteristics. The study also showed that people blood groups has an effect on their group cooperation, and among blood groups, blood group A has the greatest tendency to group participation and then blood group O, AB, B are prioritized respectively.

Opinion Retrieval in Twitter Considering Syntactic Relations of Sentiment Phrase (의견 어구의 구문 관계를 고려한 트위터 의견 검색)

  • Kim, Yoonsung;Yang, Min-Chul;Lee, Seung-Wook;Rim, Hae-Chang
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.9
    • /
    • pp.492-497
    • /
    • 2014
  • In this paper, we propose a method of retrieving opinioned tweets in Twitter, which is the one of the popular Social Network Services and shares diverse opinions among various users. In typical opinion retrieval systems, they may consider the presence of sentiment phrases (subjectivity) as the important factor even if the subjective phrases are not related to a given query or speaker. To alleviate these problems, we utilized the syntactic structure of a sentence to identify the relationships between 1) subjectivity-query and 2) subjectivity-speaker and 3) the syntactic role of subjectivity. Besides, our learning-to-rank approach is trained to retrieve opinioned tweets based on query-relevance, textual features, user information, and Twitter-specific features. Experimental results on real world data show that our proposed method can achieve better performance than several baseline methods in terms of precision and nDCG.

Developing 3D Simulation Contents for Understanding of Light and Shadow (빛과 그림자 개념 이해를 돕는 3차원 시뮬레이션 콘텐츠 개발 및 적용)

  • Lee, Ji Won;Yoon, Hayoung;Kim, Jung Bog
    • Journal of Science Education
    • /
    • v.38 no.3
    • /
    • pp.703-717
    • /
    • 2014
  • In physics, metal simulation is an important mechanism to understand and create concepts. If students have difficulty in mental simulation, understanding the concept of physics also gets difficult. By providing guide for spatial manipulation to students, 3D simulation contents can help them understand the concept of physics. In this study, the 3D simulation contents developed to help understanding the concept of light going straight and shadow is applied to 20 college students. The results, Hake gain is 0.93, showing high level of understanding about the class. In addition, through mental simulation, students predict the phenomenon well about the new context. This is shown that students' understanding of concept through 3D simulation contents are carried out well.

  • PDF

Machine Learning Model for Recommending Products and Estimating Sales Prices of Reverse Direct Purchase (역직구 상품 추천 및 판매가 추정을 위한 머신러닝 모델)

  • Kyu Ik Kim;Berdibayev Yergali;Soo Hyung Kim;Jin Suk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.176-182
    • /
    • 2023
  • With about 80% of the global economy expected to shift to the global market by 2030, exports of reverse direct purchase products, in which foreign consumers purchase products from online shopping malls in Korea, are growing 55% annually. As of 2021, sales of reverse direct purchases in South Korea increased 50.6% from the previous year, surpassing 40 million. In order for domestic SMEs(Small and medium sized enterprises) to enter overseas markets, it is important to come up with export strategies based on various market analysis information, but for domestic small and medium-sized sellers, entry barriers are high, such as lack of information on overseas markets and difficulty in selecting local preferred products and determining competitive sales prices. This study develops an AI-based product recommendation and sales price estimation model to collect and analyze global shopping malls and product trends to provide marketing information that presents promising and appropriate product sales prices to small and medium-sized sellers who have difficulty collecting global market information. The product recommendation model is based on the LTR (Learning To Rank) methodology. As a result of comparing performance with nDCG, the Pair-wise-based XGBoost-LambdaMART Model was measured to be excellent. The sales price estimation model uses a regression algorithm. According to the R-Squared value, the Light Gradient Boosting Machine performs best in this model.

데이타 코드 생성 지원 전문가 시스템의 설계

  • 박대하;정인기;백두권
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.04a
    • /
    • pp.265-274
    • /
    • 1993
  • 정보화 사회에서 대량으로 생산된 데이타 코드들은 일관된 설계 원칙없이 필요할 때마다 만들어 사용함으로써 정보의 중복 저장 및 정보교환에 있어서의 변환 작업등으로 인한 경비의 소요가 상당한 실정이다. 이러한 문제점에 대한 해결책으로 본 논문에서는 데이타코드 설계자가 일관성있게 데이타코드를 생성할 수 있도록 도와주는 데이타 코드 생성 지원 전문가 시스템의 설계에 관하여 연구하였다. 불완전 영역 설계를 위한 지식 획득과 표현에 적합한 전문가 시스템 쉘인 GUESS(Guideline Underlying Expert system Shell)를 설계하였다. GUESS는 전문가 시스템을 설계 지원 도구로 사용하는 사용자에게 기존에 작성된 적절한 설계 용례를 선택의 기준으로 제공하며, 유연성 있는 작업 지침들을 규칙으로 포함하고 있다. GUESS는 Prolog언어를 기반으로 한 추론기관과 설계지침을 포함하는 정적지식, 외부 데이타베이스를 연결한 동적 정보, 설계 세부방법을 담고 있는 부가도구들로 구성된다. GUESS/DCG는 데이타 코드 생성을 지원하기 위하여 데이타 코드의 유형과 선택기준 및 설계원리를 정적지식으로 가지며, 이를 경험적으로 탐색하는 추론 기관 및 사용자인 데이타 코드 설계자와 적절한 대화식 접근을 가능하게 하는 설명부분과 대화 인터페이스를 GUESS를 바탕으로 구현한 것이다. 특히 동적 정보의 적절한 이용과 데이타 코드의 통합된 저장, 일관성 있는 운영을 보장하기 위하여 개발중인 데이타 코드 관리시스템과의 인터페이스 부분을 추가하여 기존에 운영되고 있는 데이타 코드의 참고와 호환성, 확장성을 유지하였다. 이 시스템은 데이타 코드 관리시스템에 일관된 생성 수단을 제공하는것 외에도, 각 기관에서 대량으로 작성되는 데이타 코드를 유지, 보수하는 작업에도 큰 기여를 할 것이다.지의 선택작업이 행해지는 경우에 촛점을 맞추었다. 그리하여 다작업장의 휴리스틱에 의거한 작업순서 결정을 위해 우선 BB의 상한을 구하는 연구를 행했다. 이를 위해 우선 단일작업장에서 야기될 수 있는 모든 상황을 고려한 최적 작업순서 결정규칙을 연구했으며, 이의 증명을 위해 이 규칙에 의거했을 때의 보완작업량이 최소가 된다는 것을 밝혔다. 보완작업 계산의 효율성을 제고하기 위해 과부하(violation)개념을 도입하였으며, 작업유형이 증가된 상황에서도 과부하 개념이 보완작업량을 충분히 반영할 수 있음을 밝혔다. 본 연구에서 제시한 최적 작업순서 규칙에 의거했을 때 야기될 수 있는 여러가지 경우의 과부하를 모두 계산했다. 앞에서 개발된 단일작업량의 최적 작업순서 결정규칙을 이용하여 다작업장의 문제를 실험했다. 이 문제는 규모가 매우 크므로 Branch & Bound를 이용하였으며, 각 가지에서 과부하량이 최적인 경우만을 고려하는 휴리스틱을 택하여 실험자료를 이용하여 여러 회 반복실험을 행했다. 그리고 본 연구의 성과를 측정하기 위해 휴리스틱 기법시 소요되는 평균 CPU time 범위에서, 랜덤 작업순서에 따른 작업할당을 반복실험하여 이중 가장 좋은 해와 비교했다. 그러나 앞으로 다작업장 문제를 다룰 때, 각 작업장 작업순서들의 상관관계를 고려하여 보다 개선된 해를 구하기 위한 연구가 요구된다. 또한, 준비작업비용을 발생시키는 작업장의 작업순서결정에 대해서도 연구를 행하여, 보완작업비용과 준비비용을 고려한 GMMAL 작업순서문제를 해결하기 위한 연구가 수행되어야 할 것이다.로 이루어 져야 할 것이다.태를 보다 효율적으로 증진시킬 수 있는 대안이 마련되어져야 한다고 사료된다.$\ulcorner$순응$\lrcorner$의 범위를 벗어나지 않는다. 그렇기 때문에도

  • PDF