• Title/Summary/Keyword: DC-to-DC converter

Search Result 2,557, Processing Time 0.024 seconds

Investigation and Circuit Analysis for DC-DC Converter (DC-DC Converter 특성검토 및 회로해석)

  • Hwang, Su-Seol;Lee, Jae-Deuk
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • A DC-DC converter is a device that accepts a DC input voltage and produces a DC output voltage. Typically the output produced is at a different voltage level than the input. In addition, DC-DC converters are used to provide noise isolation, power bus regulation, etc. In this paper, it reviews some kinds of the popular DC-DC converter topolopgies and performs simulation selected basic type of DC-DC Converter.(Buck-type Converter)

  • PDF

Design of DC-DC Buck Converter Using Micro-processor Control (마이크로프로세서 제어를 이용한 DC-DC Buck Converter 설계)

  • Jang, In-Hyeok;Han, Ji-Hun;Lim, Hong-Woo
    • Journal of Advanced Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.349-353
    • /
    • 2012
  • Recently, Mobile multimedia equipments as smart phone and tablet pc requirement is increasing and this market is also being expanded. These mobile equipments require large multi-media function, so more power consumption is required. For these reasons, the needs of power management IC as switching type dc-dc converter and linear regulator have increased. DC-DC buck converter become more important in power management IC because the operating voltage of VLSI system is very low comparing to lithium-ion battery voltage. There are many people to be concerned about digital DC-DC converter without using external passive device recently. Digital controlled DC-DC converter is essential in mobile application to various external circumstance. This paper proposes the DC-DC Buck Converter using the AVR RISC 8-bit micro-processor control. The designed converter receives the input DC 18-30 [V] and the output voltage of DC-DC Converter changes by the feedback circuit using the A/D conversion function. Duty ratio is adjusted to maintain a constant output voltage 12 [V]. Proposed converter using the micro-processor control was compared to a typical boost converter. As a result, the current loss in the proposed converter was reduced about 10.7%. Input voltage and output voltage can be displayed on the LCD display to see the status of the operation.

Development of Wireless Power Transceiver with Bi-directional DC-DC Converter (양방향으로 동작하는 DC-DC Converter를 이용하는 무선 전력 송수신기 개발)

  • Moon, Young-Jin;Yoo, Changsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.111-121
    • /
    • 2014
  • A bi-directional DC-DC converter has been developed for a wireless power transceiver which enables a device to receive and transmit power wireless. Generally, the wireless power transceiver requires two DC-DC covnerter and two external inductors. However, the proposed wireless power transceiver requires only one DC-DC converter and one inductor, allowing small form-factor. The bi-directional DC-DC converter implemented in $0.35{\mu}m$ BCDMOS process operates as a buck converter at the wireless power receiving mode and the power efficiency is 91% when the ouput power is 3W. In the wireless power transmitter mode, the DC-DC converter operates as a boost converter. With the bi-directional DC-DC converter and the proposed efficiency maximizing techniques, the power efficiency of wireless power transceiver is 81.7% in receiver mode and 76.5% in transmitter mode.

Single Input Multi Output DC/DC Converter: An Approach to Voltage Balancing in Multilevel Inverter

  • Banaei, M.R.;Nayeri, B.;Salary, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1537-1543
    • /
    • 2014
  • This paper presents a new DC/AC multilevel converter. This configuration uses single DC sources. The proposed converter has two stages. The first stage is a DC/DC converter that can produce several DC-links in the output. The DC/DC converter is one type of boost converter and uses single inductor. The second stage is a multilevel inverter with several capacitor links. In this paper, one single input multi output DC-DC converter is used in order to voltage balancing on multilevel converter. In addition, as compare to traditional multilevel inverter, presented DC/AC multilevel converter has less on-state voltage drop and conduction losses. Finally, in order to verify the theoretical issues, simulation and experimental results are presented.

Modeling and Control of a Two-Stage DC-DC-AC Converter for Battery Energy Storage System (배터리 에너지 저장 장치를 위한 2단 DC-DC-AC 컨버터의 모델링 방법)

  • Hyun, Dong-Yub;Jung, Seok-Eon;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.422-430
    • /
    • 2014
  • This study proposes a small-signal model and control design for a two-stage DC-DC-AC converter to investigate its dynamic characteristics in relation to battery energy storage system. When the circuit analysis of the two-stage DC-DC-AC converter is attempted simultaneously, the mathematical procedure of deriving the dynamic equation is complex and difficult. The main idea of modeling the two-stage DC-DC-AC converter states that this topology is separated into a bidirectional DC-DC converter and a single-phase inverter with an equivalent current source corresponding to that of the inverter or converter. The dynamic equations for the separated converter and inverter are then derived using the state-space averaging technique. The procedures of building the small-signal model of the two-stage DC-DC-AC converter are described in detail. Based on the derived small-signal model, the individual controllers are designed through a frequency-domain analysis. The simulation and experimental results verify the validity of the proposed modeling approach and controller design.

DC Power Supply Driving Discharge Lamp Using PWM DC-DC Converter of Single- Phase Shift Soft Switching (위상 천이 소프트 스위칭 PWM DC-DC 컨버터를 이용한 방전등 구동용 직류 전원장치)

  • Lee, Hyun-Woo;Jung, Sang-Hwa;Kwon, Soon-Kurl;Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.100-106
    • /
    • 2005
  • Generally, high frequency switching DC-DC converter that DC power supply for discharge lamp drive to generate ultraviolet rays(UV) is acted by hard switching mode is used. Therefore in this paper, wish to mix first existent first-side status phase shift PWM DC-DC converter and posing secondary-side status phase shift PWM DC-DC converter by high frequency link DC-DC converter that use soft switching circuit technology and develop DC power supply for discharge lamp drive. DC power supply driving Discharge lamp proposed describe validity through simulation and an experiment.

Design and Control Methods of Bidirectional DC-DC Converter for the Optimal DC-Link Voltage of PMSM Drive

  • Kim, Tae-Hoon;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1944-1953
    • /
    • 2014
  • This paper shows the design and control methods of the bidirectional DC-DC converter to generate the proper DC-link voltage of a PMSM drive. Conventionally, because the controllable power of the PWM based voltage source inverter is limited by its DC-link voltage, the DC-DC converter is used for boosted DC-link voltage if the inverter source cannot generate enough operating voltage for the PMSM drive. In this paper, to obtain more utilization of this DC-DC converter, optimal DC-link voltage control for PMSM drive will be explained. First, the process and current path of the DC-DC converter will be illustrated, and a control method of this converter for variable DC-link voltage will then be explained. Finally, an improvement analysis of the optimal DC-link voltage control method, especially on the deadtime effect, will be explained. The DC-DC converter of the proposed control method is verified by the experiments by comparing with the conventional constant voltage control method.

The Topology of Soft Switching Boost Type DC-DC Converter using a Passive Auxiliary Resonant Snubber (패시브 보조 공진 스너버를 이용한 소프트 스위칭 승압형 DC-DC 컨버터의 토폴로지)

  • Sung, Chi-Ho;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.146-152
    • /
    • 2015
  • In this paper, we propose a boost DC-DC converter using a modification of the passive auxiliary resonant snubber circuit with a DC-DC converter in a typical active auxiliary resonant snubber-bridge inverter. The proposed boost DC-DC converter is small compared to the DC-DC converter according to the soft-switching scheme that requires a general auxiliary switch by realizing the soft switching operation as a DC-DC converter which does not require an auxiliary switch. It is light-weight, switch the turn-on and turn-off switching loss at the time of the superposition of the voltage and current is extremely small, so small. And the reduction of the surge voltage and current of the switch. In addition, the proposed boost DC-DC converter has a high efficiency over a wide load characteristics change area than conventional hard switching PWM boost converter using an RC snubber loss.

A New High Efficient Bi-directional DC/DC Converter in the Dual Voltage System

  • Lee Su-Won;Lee Seong-Ryong;Jeon Chil-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.343-350
    • /
    • 2006
  • This paper introduces a new high efficient bi-directional, non-isolated DC/DC converter. Through variations of the topology of the conventional Cuk converter, an optimum bi-directional DC/DC converter is proposed. Voltage and current in the proposed DC/DC converter are continuous. Furthermore, the efficiency in both step-up and step-down mode is improved over that of the conventional bi-directional converter. To prove the validation for the proposed converter, simulations and experiments are executed with a 300W bi-directional converter.

Implementation of PID controller for DC-DC converter using microcontroller (마이크로컨트롤러를 이용한 DC-DC 변환의 PID 제어기 설계)

  • Awouda, Ala Eldin Abdallah;Lee, Yong-Hui;Yi, Jae-Young;Yi, Cheon-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.83-86
    • /
    • 2002
  • This paper presents an implementation of Pill controller for DC-DC converter using the microcontroller. The features of the microcontroller such as the on chip ADC and Pulse width Modulator (PWM) eliminate the external components needed to perform these functions. The duty rate cycle for the DC-DC converter can be updated every time when the (ADC) conversation and the calculation time are finished. The stable response can be obtained for any kind of DC-DC converters. The SMPS controller looks at the converter output, compares the output to a set point, performs a control algorithm (Pill algorithm) and finally applies the algorithm output to the PWM. PWM output is then used to drive the DC-DC converter. Figure (1) shows a simplified block diagram of a complete DC-DC converter system.

  • PDF