• Title/Summary/Keyword: DC-link voltage variation

Search Result 49, Processing Time 0.025 seconds

Design of Pamanent Magnet Linear synchronous Motor System by parameter estimation and DC link voltage. (설계 파라미터와 DC link 전압에 의한 직선형 영구자석 동기 모터 시스템 설계)

  • Jang, Seok-Myeong;You, Dae-Joon;Jang, Won-Bum;Choi, Jang-Young;Seo, Jung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1080-1082
    • /
    • 2005
  • This paper presents the system design of permanent magnet linear synchronous machine with double-side PM mover and slotless iron-cored stator in the required speed and thrust. in this paper, the design of manufacturing motor is optimized by characteristics of motor parameters with the variation of PM size and coil turns. And, the permissible operating range of manufactured motor by determination of base speed and base thrust according to switching scheme of DC link voltage are offered. Finally, the results of analytical solutions are verificated by finite element analysis and experiment.

  • PDF

DC-Voltage Regulation for Solar-Variable Speed Hybrid System

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.123-124
    • /
    • 2015
  • Recently interest on DC systems has been grown up extensively for more efficient connection with renewable energy. During the operation, there happens DC_link voltage variations. This paper focuses on the DC voltage stabilization applied in stand-alone DC microgrid to improve the system stability by keeping the voltage within limits. Batteries and a variable speed diesel generator cover the shortage of power after all available renewable energy is consumed. Load shedding or power generation reduction should automatically takes place if the maximum tolerable voltage variation is exceeded. PSIM based simulation results are presented to evaluate the performance of the proposed control measures.

  • PDF

New Control Scheme for AC-DC-AC Converter Without DC Link Electrolytic Capacitor (직류링크 전해커패시터 없는 AC-DC-AC 컨버터 제어에 관한 연구)

  • Kim, Joohn-Sheok;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.695-697
    • /
    • 1993
  • In this paper, a novel concept for a static three-phase to three-phase power converter for an AC drive with an unity power factor and reduced harmonics on the utility line is presented. The power circuit consists of two back-to-back connected six-pulse bridges having only a $5{\mu}F$ ceramic capacitor in the DC link. By controlling the active power balance between two bridges, the DC link voltage can be maintained within 20V deviation from the nominal value with the small ceramic capacitor regardless of the load variation even in the unbalanced source condition.

  • PDF

Impoved Performance of Sensorless Induction Motor Drive in Low Speed Range Using Variable Link Voltage (가변 링크전압에 의한 센서리스 유도전동기의 저속운전 성능개선)

  • 김상균;권영안
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.90-98
    • /
    • 2004
  • Variable-speed drives are being continually innovated. Recently, sensorless induction motor drives have been much studied due to several advantages. Most sensorless algorithms are based on the mathematical modeling of motors, and all the information is obtained from the monitored voltages and currents. Therefore, the accuracy of such variables largely affects the performance of a sensorless induction motor drive. However, the output voltage of the SVPWM-VSI which is widely used in a sensorless induction motor drive has a considerable error, especially in a low speed range. This paper proposes a variation of the dc link voltage as a high-performance strategy for overcoming the above problem. The proposed strategy leads to an improved resolution of the output voltage of the SVPWM-VSI in a sensorless induction motor drive. Simulation and experiment have been performed for the verification of the proposed strategy.

Induction Motor of Effect for Variation Sag, Swell of Harmonic Order (유도전동기 운전 중 Sag 영향에 의한 고조파 차수 변화)

  • Park, In-Deok;Lee, Seung-Hwan;Kim, Si-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.954-955
    • /
    • 2008
  • In this paper, the voltage harmonics are investigated in terms of the voltage sag versus the time constants of electric machinery under the source voltage variation condition. The electric machinery and compensation equipment are established on the proposed design scheme based on voltage quality effect assessment technology. It have been analyzed how the variation of harmonic order, the output current, the DC-Link voltage and the induction motor speed is carried out under the voltage sag and switching frequency variation.

  • PDF

Evaluation of Power Flow Control Strategy and DC-link Voltage Regulation for DC Microgrid

  • Nguyen, Thanh Van;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.416-417
    • /
    • 2019
  • In this paper, an effective power flow control strategy (PFCS) based on the centralized control approach and a DC-link (DCV) restoration algorithm for DC microgrid (DCMG) are presented. By investigating the statuses of system power units, eleven operating modes are given to ensure the system power balance under various conditions. To avoid the system power imbalance caused by the delay of grid fault detection, a reliable DCV restoration algorithm is proposed. In the proposed scheme, when an abnormal variation of the DCV is detected, the battery instantly starts a local emergency control mode to restore the DCV to the nominal value regardless of the control mode from the central controller. The simulations and experiments are carried out to prove the effectiveness of the PFCS and the proposed DCV restoration algorithm.

  • PDF

Motor Drive System Analysis and Controller Design for Fuel cell Electronics Vehicle (연료전지 전기자동차 전력 구동시스템 분석 및 전동기 구동시스템 제어기 설계)

  • Lee, Myung-Jin;Park, In-Duck;Kim, Si-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.484-486
    • /
    • 2004
  • In this paper, the power electronics requirement and the controls of an induction motor for fuel cell electric vehicle system are presented. The power topology is selected based on performance, cost, size, volume, manufacturability, component count and simplicity. Another highlight of the topology is the reduction of battery bank and its control strategy. The proposed approach consists a full-bridge DC/DC converter to boost the fuel cell voltage. The induction motor operated with vector control is driven by a three-phase PWM inverter supplied by the DC-link voltage. The investigation of the electric vehicle performed due to parameter variation of the induction motor has been presented.

  • PDF

Compensation of Temperature Characteristics for Capacitance Estimation of DC-link Capacitors (직류링크 커패시터의 용량 추정시 온도특성 보정)

  • Pu, Xingsi;Kim, Kyung-Hyun;Lee, Dong-Choon;Lee, Kyo-Beum;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.387-393
    • /
    • 2010
  • This paper proposes a correction method of capacitance estimation considering the temperature effect for the DC-link capacitor banks in three-phase AC/DC/AC PWM converters. At first, operating temperature of the capacitors is detected and capacitance variation is corrected due to the temperature effect. Thermisters are used for sensing the temperature and voltage variation across the thermister is exploited to identify the capacitance change. The validity of the proposed method has been verified by experimental results.

Regenerative Current Control Method of Bidirectional DC/DC Converter for EV/HEV Application

  • Lee, Jung-Hyo;Jung, Doo-Yong;Lee, Taek-Kie;Kim, Young-Ryul;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.97-105
    • /
    • 2013
  • The control method of the bidirectional DC/DC converter for instantaneous regenerative current control is described in this paper. The general method to control the DC/DC converter is the output voltage control. However, the regenerative current cannot be controlled to be constant with this control method. To improve the performance of the conventional control method, the DC-link voltage of the inverter is controlled within the tolerance range by the instantaneous boost and buck operations of the bidirectional DC/DC converter. By the proposed control method, the battery current can be controlled to be constant regardless of the motor speed variation. The improved performance of the DC/DC converter controlled by the proposed control method is verified by the experiment and simulation of the system with the inverter and IPMSM(Interior Permanent Magnet Synchronous Motor) which is operated by the reduced practical speed profile.

Wireless Power Charging System Capable of Soft-Switching Operation Even in Wide Air Gaps (넓은 공극범위에서 소프트스위칭 동작하는 무선전력 충전시스템)

  • Yu-Jin, Moon;Jeong-Won, Woo;Eun-Soo, Kim;In-Gab, Hwang;Jong-Seob, Won;Sung-Soo, Kang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.515-525
    • /
    • 2022
  • The wireless power transfer (WPT) charging system for AGV depends highly on the coupling conditions due to air gap variation. To attain stable output power with high transfer efficiency under various coupling conditions, a single-stage, DC-DC converter that operates with robustness to changes in air gaps is proposed for the WPT system. The proposed converter is capable of soft switching under the set input voltage (Vin: 380 VDC), load conditions (0-1 kW), and air gap changes (30-70 mm). In addition, a wide output voltage range (Vo: 39-54 VDC) can be controlled by varying the link voltage due to the phase control at a fixed switching frequency. Experimental results are verified using a prototype of a 1 kW wireless power charging system.